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Plate tectonics provides a remarkably accurate kinematic description of the 
motion of the earth’s crust but a fully dynamical theory requires an under- 
standing of convection in the mantle. Thus the properties of plates and of the 
mantle must be related to a systematic study of convection. This paper reviews 
both the geophysical information and the fluid dynamics of convection in a 
Boussinesq fluid of infinite Prandtl number. Numerical experiments have been 
carried out on several simple two-dimensional models, in which convection is 
driven by imposed horizontal temperature gradients or else by heating either 
internally or from below. The results are presented and analysed in terms of 
simple physical models. Although the computations are highly idealized and 
omit variation of viscosity and other major features of mantle convection, they 
can be related to geophysical measurements. I n  particular, the external gravity 
field depends on changes in surface elevation; this suggests an observational 
means of investigating convection in the upper mantle. 

1. Introduction 
It is now generally accepted that the earth’s surface consists of a number of 

spherical caps, or plates, in relative motion, and plate tectonics, the kinematic 
description of this behaviour, has recently been reviewed a t  some length (Le 
Pichon 1968; hacks, Oliver & Sykes 1968; McKenzie 1972). The movement of 
plates is presumably associated with convection in the mantle but the full 
dynamical process that causes their displacement is still obscure. The aim of this 
paper is to bridge a gap between applied mathematics and earth sciences. Though 
the forces which maintain the plate motions appear to be governed by the 
equations of fluid dynamics, the form of these equations differs from those which 
determine the motions of the oceans and atmosphere; a new branch of geophysical 
fluid dynamics is necessary in order to understand convection in the earth’s 
mantle. 

We shall therefore review the geophysical data on plate tectonics and the 
structure of the upper mantle together with their sources, as well as relevant 
fluid-dynamical information. Though Turcotte & Oxburgh (1972) have recently 
discussedthese questions they have fewer reservations than we do about the direct 

F L M  6 2  30 



466 D. P .  McKenzie, J .  M .  Roberts and N .  0. Weiss 

relationship between surface observations and mantle motions. Recent work on 
oceanic heat flow (Sclater & Francheteau 1970) and the topography of ridges 
(Sclater, Anderson & Bell 1971) has not supported Turcotte & Oxburgh’s views. 
A recent laboratory demonstration by Oldenburg & Brune (1972) of a ridge and 
transform fault pattern when the skin on cooling wax is stretched clearly demon- 
strates that ridges are the direct result of extension. There are therefore at  present 
no surface observations which suggest that the position of ridges is related to 
major vertical motions in the mantle, and it is therefore useful to discuss the 
relevance of surface observations to major motions within the mantle with some 
care. 

We also present some new fluid-dynamical results, derived from numerical 
experiments on various two-dimensional models of convection in the mantle. 
Although the equations and boundary conditions are highly simplified, and in 
particular assume a constant viscosity, the computations already display a 
wealth of complicated behaviour. The simplification is deliberate: it is more 
profitable to begin with a carefully planned study of idealized models than to 
program every detail and generate results that  are neither comprehensible nor 
accurate. Although caution is needed in making geophysical inferences from 
such simple models, this systematic investigation of the fluid dynamics of 
viscous convection is a necessary preliminary to  more elaborate computations. 

The next section contains a brief review of plate tectonics for applied 
mathematicians, with a summary of basic concepts and of current ideas. Various 
dynamical mechanisms are discussed, but any treatment of convection requires 
some knowledge of relevant properties of the mantle. This is provided in $3,  
with arguments for assuming that convection is confined to the upper mantle, 
where the fluid may have a Newtonian viscosity whose value, with other para- 
meters, can be estimated. The geophysical situation is then replaced by a highly 
simplified mathematical problem, governed by nonlinear partial differential 
equations which must be solved on a computer. The numerical methods of $ 4  
are used to  solve these equations in the two-dimensional case. I n  $5 we review 
previous work and present results of numerical experiments on convection pro- 
duced by horizontal temperature gradients, by heating from below and by inter- 
nal energy sources. These results are then analysed and explained in terms of 
simple boundary-layer ideas. An attempt is made, in $6 ,  to relate these com- 
putations to the behaviour of the earth’s mantle by estimating relevant measur- 
able quantities : the surface elevation, gravity anomaly, heat flux, temperature 
gradient and surface velocity. Finally, we indicate the extensive further calcula- 
tions that are needed to understand convection in the mantle. 

2. Plate tectonics 
I n  1962 Hess published a speculative paper on the history of the ocean basins, 

and the subsequent development of his ideas has profoundly changed our under- 
standing of the evolution of the earth’s surface. The essential concept of plate 
tectonics, that the earth’s surface is composed of rigid plates in relative motion, 
is simple and easily confirmed. Analysis of earthquake motions (McKenzie & 
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Parker 1967) and of oceanic fracture zones (Morgan 1968) shows that this hypo- 
thesis provides an accurate description of surface motions of the earth. Moreover, 
the theory has increased our understanding of many geological problems and, 
in particular, of the history of ocean basins. 

The theory is constructed in terms of relative motion between the spherical 
caps or plates because such motion can be directly measured. The boundaries 
between the plates are defined by the earthquake belts of the world, which in 
oceanic regions are very narrow linear strips (Isacks et al. 1968; Barazangi & 
Dorman 1969). When two plates are moving apart mantle material from below 
wells up and cools to form new plate. Plate boundaries of this type are known 
as ridges, and form shallow linear features in many ocean basins, elevated 3 km 
above the deep ocean floor. Where two plates slide past one another the motion 
conserves the area of both plates. Such boundaries are called transform faults 
(Wilson 1965). The third and most complicated type of plate boundary is one 
where plate is destroyed, and is called a trench. Destruction is accomplished by 
one plate overriding the other and pushing it down into the mantle. In  the develop- 
ment of the theory the boundaries between oceans and continents are ignored, 
and all major plates defined by the seismic belts consist of both continent and 
ocean. The only difference between the behaviour of continental and oceanic 
crust occurs in trenches. Continental rocks contain more silica than those from 
the oceans; they are therefore less dense and cannot sink into the mantle. Thus 
continental rocks remain on the surface and are generally considerably older 
and more deformed than those from the ocean basins. However, the oceanic 
crust and upper mantle are formed from the mantle below the plates. Therefore 
the mean chemical composition of the oceanic part of a plate is the same as that 
of the material below, from which i t  differs only by being colder. For this reason 
the oceanic plates are denser than the mantle below and can sink through it. 
The different behaviour of continental and oceanic crust must occasionally result 
in major rearrangements of the plate boundaries. 

These rather simple ideas are important because the relative motion between 
two rigid spherical caps can be described by a rigid rotation about some axis 
through the centre of the earth. This result is a consequence of Euler’s theorem 
applied to motions on the surface of a sphere (Goldstein 1950; Bullard, Everett 
& Smith 1965). It is therefore possible to describe the relative motion of two plates 
with three parameters -for example, the latitude and longitude of the rotation 
axis, and either the rotation rate or the rotation angle. An adequate description 
of the earth’s surface motions can be obtained by using seven plates, and hence 
18 free parameters. The success of plate tectonics is a direct consequence 
of the small number of degrees of freedom permitted by the rigid motion of 
large caps. Le Pichon (1968) determined 15 of the parameters, and recent 
redeterminations of these 15 by Chase (1972) have demonstrated that major 
revisions of Le Pichon’s values are not required by the more extensive data now 
available. It is clear from the success of plate tectonics and from its general 
acceptance that an accurate kinematic theory now exists which can describe the 
surface motions of the earth. It is, however, important to realize that this success 
has come about only because the theory is a kinematic one. In  the earlier attempts 
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to  construct a general theory of the tectonics of the earth (Hess 1962; Runcorn 
1965) surface features had been explained as direct expressions of flow throughout 
the mantle. These authors believed that the rising limb of the convection cell 
must be beneath the ridge axis and the sinking limb beneath a trench. When the 
details of the observed motions were worked out this view required implausibly 
complicated evolution of the convective flow and it has now largely been aban- 
doned (see, for instance, Isacks et al. 1968; McKenzie 1969). Perhaps the major 
reason why surface features are no longer believed to be closely related to the 
flow below is because they can now be simply and accurately accounted for by 
the creation and destruction of plates. Though this success does not demonstrate 
that the earlier views were incorrect, the simplicity of the plate modelis in striking 
contrast to the complications required to generate a ridge offset by transform 
faults as a result of convection in the mantle. 

The major features of ridges are their elevations above the surrounding ocean 
basins, and the high heat flow observed through the sea floor near their axes. 
Both features can be explained if they are sites of the creation of plate about 
75km thick by upwelling of hot mantle from below (McKenzie 1967a; Sclater 
& Francheteau 1970; Sclater et at. 1971). The strength of a plate 75km thick is 
sufficient to transmit stresses across distances comparable with the radius of the 
earth without exceeding the yield stress of the rock from which it is made, and 
therefore permits rigid motion of the largest plates. 

The topography and large gravity anomalies of trenches are the consequence 
of the bending of the plate which is underthrusting beneath the island arc 
(Hanks 1971). If the upper 30 km of the plate behaves elastically during the bend- 
ing then the details of the bathymetry of the trench can be accounted for if the 
shearing stress within the slab is of the order of a few kilobars (1 kilobar = 108N 
m-2). 

Perhaps the most unexpected success of plate tectonics was the explanation 
it provided of earthquakes below a depth of 70 km beneath the island arcs. No 
previous theory had satisfactorily explained their existence. The earthquakes 
on ridges and transform faults are always a t  a depth of less than 70 km and may 
well be shallower. Beneath island arcs, however, earthquakes occur within thin 
planar slabs extending to depths of up to 690 km, and with thicknesses of 50 km 
or less (Sykes 1966; Mitronovas, Isacks & Seeber 1969). Oliver & Isacks (1967) 
suggested that these shocks occur within a slab of what was once part ofan oceanic 
plate but has since been underthrust beneath an island arc. This explanation 
accounts for the mechanism of earthquakes beneath island arcs, and also for the 
low attenuation and high propagation velocity of longitudinal (P) and transverse 
(S) waves travelling through the slab compared with corresponding paths through 
the rest of the upper mantle (Isacks et al. 1968; Cleary 1967; Davies & McKenzie 
1969). 

This brief summary of the theory of plate tectonics gives little idea of the wide 
variety of geophysical observations for which it now accounts, or of the power 
of the simple kinematic theory when used to reconstruct the positions of the 
continents and the bathymetry of ocean basins. An account of the relationship 
of many seismological observations to the new theory is given by Isacks et al. 
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Lower mantle 

FIGUJXE 1. Section through the earth along 110" E from the equator to the South Pole 
with no vertical exaggeration. The black outer boundary layer consists of rigid plates 
which are created at ridges and separate from the earth's surface beneath island arcs to  
descend no more than 700 km. 

(1968). Dewey & Bird (1971) have shown how the structure and evolution of 
many mountain chains is related to that of island arcs, and McKenzie & Sclater 
(1971) have used the concepts of plate tectonics to study the features of the floor 
of the Indian Ocean and its evolution during the last 80 Myr. Though opposition 
to the new theory remains, it is generally based on misconceptions rather than 
on contradictory observations. 

The main features of the theory of plate tectonics are shown in figure 1, 
which also shows the more important horizontal boundaries in the earth's 
mantle discussed in this section. It represents a section across the Indian Ocean, 
from the Java-Sumatra Arc to the Antarctic continent along 110" E. The vertical 
scale of the section is not exaggerated and the great horizontal extent of the 
plates, compared with their thickness, is striking. In  figure 2 the earth's curva- 
ture has been omitted and the vertical scale exaggerated to show the shape of 
ridges and trenches; the horizontal means of the density and temperature are 
also shown. The determination and accuracy of these estimates is discussed in 3 3. 

The section in figures 1 and 2 closely resembles many examples in fluid dy- 
namics in which boundary layers are formed a t  the edges of the flow. The plates 
are, however, rather different from the thermal boundary layers formed in con- 
vecting liquids because their mechanical behaviour differs from that of the 
mantle below. The ridges are lines where the boundary layer is generated from 
the hotter material below, and the trenches mark lines where one boundary 
layer becomes detached from the earth's surface and is absorbed into the mantle 
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FIGURE 2 .  The same section as that in figure 1, ignoring the earth's curvature and showing 
the gravity field determined from the motion of satellites, a simplified section of the topo- 
graphy and the variation of P-wave velocity, density and temperature with depth. The 
gravity field is that of Gaposchkin & Lambeck (1971) referred to the best-fitting ellipsoid, 
the bathymetry is simplified from Zhivago (1966), the P-wave velocity is taken from John- 
son (1967) and the density distribution from Ringwood (19726). The best estimate of the 
temperature distribution beneath the ocean basins to a depth of 150 km is shown by the 
solid curve. Below 150 km the solid curve follows Ringwood's (19726) estimate of the adia- 
batic temperature distribution: the dotted line shows the distribution expected if con- 
vection of heat is taken into account (see $6). 

as it sinks. This motion convects cold material to a depth of 700 km and therefore 
represents a mechanism of vertical heat transfer by convection. The thermal 
structure of the plates which form the boundary layer is governed by the diffu- 
sion of heat vertically, or normal to the plane of a sinking slab, and by convection 
in directions lying in the plane. 

Though plate motions must involve thermal convection it is not obvious that 
it is the convection which maintains the motion. For example, several authors 
have suggested that the earth might expand owing to a variation of G, the gravi- 
tational constant. Recently this argument has been vigorously revived by 
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Hoyle (Hoyle & Narlikar 1972; Hoyle 1972), who argues that c?- may be obtained 
from the variation of the length of day due to processes within the earth in the 
last 2 x lo3 yr, and that such a variation can account for the existence of spreading 
ridges. Though i t  is by no means clear that there has been a change in the earth’s 
moment of inertia in the last 2 x 103yr, a change in the observed magnitude and 
sign would be expected in response to isostatic adjustments after the last glacia- 
tion (McKenzie 1967b; O’Connell 1971). There is therefore no necessity to appeal 
to cosmological effects to explain the observations. Hoyle’s suggestion that the 
oceanic ridges might be produced by expansion of the earth is not consistent with 
the observations. Chase (1972) has calculated the rate a t  which sea floor is now 
being produced to be 2.93 km2 yr-l. The uncertainty in this value is unlikely to be 
greater than 10%. In  contrast Hoyle’s larger value for d gives a figure of 
1-5 x km2yr-1, which is insignificant. There is a further important argument 
against any major change in the earth’s radius in the last 4 x 108 yr. Bullard 
et al. (1965) were able to fit Africa to America by rigid motions, showing that the 
radii of curvature of both continents have not changed during the formation of 
the south Atlantic. Furthermore except in the Andes and Atlas mountains both 
continents have suffered little deformation in the last 4 x lo* yr. Therefore, though 
geophysical arguments cannot rule out small changes in G there is a t  present no 
evidence in their favour. Moreover any allowable changes in G are quite unable to 
account for plate motions which have occurred in the last 75 Myr. 

Many other possible mechanisms have been suggested, but only three can 
satisfy the constraint imposed by the energy requirements. Since all major 
earthquakes are the result of plate motions, their energy release of about 
5 x lo1* Jyr-l, or 2 x lo l l  W, provides a lower bound on the rate of energy pro- 
duction required by the driving mechanism (McKenzie 1972). Owing to the success 
of the kinematic theory, few observations remain to be accounted for by a dy- 
namic theory. Exceptions are the mean oceanic heat flow (McKenzie 1968a; 
Sclater & Francheteau 1970) of about 5.8 x W m-2, the relative motion 
between plates of 10-100 mm yr-l, and the long-wavelength gravity anomalies 
determined from the motion of satellites (Runcorn 1965; McKenzie 1969). These 
phenomena are not explained by the existence of plates, yet all must be the 
surface expressions of motion below the plates. Unlike the seismic energy 
release, they cannot easily be used to eliminate mechanisms. They do, however, 
provide conditions which any successful theory of the motion must satisfy 

The three driving forces which satisfy the energetic requirements are the 
growth of the earth’s core, tidal friction and radioactive heat generation. 
If the iron now in the earth’s core was originally uniformly distributed through- 
out the mantle, then the energy released by core formation would be 1031 J (Tozer 
1965). Provided that this energy is released at a uniform rate the process of 
conversion into seismic energy would only have to be 0-02 % efficient to maintain 
the present rate of energy release throughout geological time. It is, however, 
very difficult to produce a non-catastrophic model of core formation (Tozer 
1965), and therefore little work has been done on this problem. Another difficulty 
is that no iron metal has been found in rocks dredged from ridges. Therefore the 
part of the mantle involved in the creation of plates contains no free iron sinking 
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towards the core and thus cannot be providing the energy. These difficulties 
suggest that the other two possible mechanisms should be examined carefully 
before attempting to produce a model driven by sinking iron. 

The total dissipation of the solar and lunar tides is about 3 x 1012W, or 
9 x 1019 J yr-I (Munk & MacDonald 1960). The proportion of this energy which is 
dissipated in the oceans has been discussed for fifty years, but without any general 
agreement. The principal difficulty is that the coupling coefficients between the 
tides and the internal modes of oscillation of the ocean are unknown, and tidal 
currents in many shallow seas have not been measured (Munk 1968). Two rather 
uncertain arguments suggest that most of the dissipation does in fact take place 
in the oceans and not in the solid earth. The first is that Hendershott’s (1972) 
numerical solution of Laplace’s tidal equation requires a dissipation rate of 
3 x 10l2 W. Since these calculations agree reasonably well with tidal observations 
a t  island stations (Hendershott & Munk 1970), the calculated dissipation is 
probably reasonably accurate. The other argument involves the evolution of the 
lunar orbit. If the present rate of tidal dissipation is used to calculate the time of 
closest approach of the moon to the earth it is found to have occurred less than 
2000Myr ago (Kaula 1971). This event must have produced catastrophic tides 
on the earth (Munk 1968), and since reef-building organisms existed in shallow 
seas at that time it appears unlikely that the calculated date is accurate. The 
tidal dissipation in the oceans is profoundly affected by changes in the area 
covered by shallow seas and by changes in the geometry of ocean basins produced 
by plate motions. It is therefore more likely that major changes in total tidal 
dissipation can result if the energy loss takes place in the oceans rather than in 
the solid earth. Neither of these arguments is a t  present particularly strong, but 
the conversion of tidal energy into seismic energy would have to  have an efficiency 
of 5 % to maintain the plate motions. Since considerable tidal dissipation un- 
doubtedly occurs in shallow seas this estimate of the efficiency is undoubtedly 
too low, and tidal effects will therefore be ignored. 

The third known energy source is the heat generated by radioactive decay 
of 40K, 2W, 235U and 232Th within the earth’s crust and mantle. The heat flow 
through the deep oceans alone from these sources is about 3.9 x 1020J yr-1; 
if that through the continents is also included the total energy is about 1-4 x 1021 J 
yr-1. Therefore the conversion of heat into seismic energy need only be between 
1.0 and 0.3 yo efficient. This requirement is not difficult to satisfy, and for this 
reason most work on the problem of the driving mechanism has been concerned 
with the manner in which the mantle, acting as a heat engine, converts thermal 
energy into mechanical work by some form of convection. Unfortunately the full 
equations which govern the motion cannot be solved a t  present even by numerical 
methods, principally because the motion is three-dimensional and the flow is 
dominated by nonlinear effects and boundary layers. Four different types of 
approach to these equations have been attempted. Hales (1936) first suggested 
that the mantle might be unstable to convection. Since then Runcorn (1965), 
Vening Meinesz (1962) and Knopoff (1964) have argued that the properties and 
temperature gradient within the mantle are such as to maintain a state close to 
marginal stability, and have therefore applied and extended the results of 
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Chandrasekhar (1961), governing the onset of convection in spherical shells. 
This approach applies to the mantle only if the mean temperature is governed 
by thermal diffusion and not by convection itself. For this condition to be satisfied 
the flow must be sufficiently slow to permit heat to diffuse across the convecting 
region in a time short compared with the overturn time. Since the convection 
extends to a depth of a t  least 700 km and the flow velocity a t  the surface is 
between 10 and lOOmmyr-l, the time taken for a fluid element to travel in a 
circle of diameter 700km is between 10 and 100Myr. In  this time heat can only 
diffuse through a distance of less than 150 km. This simple calculation shows that 
the temperature distribution within the mantle must be governed by convection 
of heat, and therefore marginal-stability solutions are not relevant to the geo- 
physical problem. 

The second type of approach is suggested by figure 1 .  The plates exist because 
they can transmit stresses over large distances, and are colder than the mantle 
below. Elsasser (1969) pointed out that a sinking slab beneath an island arc 
exerts a force towards the arc on the plate to which i t  is attached. The magnitude 
of the stress is between lo* and lo9 Nm-2 and is probably su6cient to move the 
plate on which it acts. There are, however, certain difficulties with Elsasser's sug- 
gestion (MeKenzie 1969). The most important is that Africa and South America 
are separating a t  40mmyr-l though neither has a large sinking slab attached. 
(A similar attempt to maintain the flow by the buoyancy forces in the boundary 
layer a t  ridge rather than a t  trenches has been made by Lliboutry (1969). How- 
ever, his mechanism does not produce enough energy to satisfy the seismic energy 
requirements.) 

The principal reason why Elsasser's and Lliboutry 's suggestions are attractive 
is that they only involve buoyancy forces which are the direct result of plate 
motions. The convective term in the heat equation therefore involves a constant 
velocity, and for this reason the equation governing the temperature is linear 
and can be solved by the usual methods (McKenzie 1969). Both suggestions 
depend on the neglect of buoyancy forces in the main flow compared with those 
in the thermal boundary layer. If the temperature difference between the sink- 
ing slabs of thickness 70km and the mantle is lOOO"C, then the temperature 
difference across regions 5000 km in extent must be much less than 15 "C if the 
buoyancy force of the boundary layer is to dominate. The calculations below and 
the magnitude of the non-hydrostatic gravity field both suggest that tempera- 
ture differences in the main flow are greater than 15 "C and therefore that both 
viscous and buoyancy forces in the main flow must be included. 

Another convective mechanism has recently been put forward by Howard, 
Malkus & Whitehead (1970), Whitehead (1972) and Huppert (1971). They sug- 
gested that radioactive heat generation within the continental crust was sufficient 
to heat the mantle beneath the continents and hence to maintain horizontal 
temperature gradients which would drive the flow and propel the continents 
themselves. The idea of convection driven by horizontal temperature gradients 
was proposed by Pekeris (1935) and briefly considered by Allan, Thompson 
& Weiss (1967) and McKenzie (1968a) as a possible means of producing continen- 
tal drift. Since then the world-wide pattern of plate motions has been determined 
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in some detail and this mechanism proves inadequate. There are several large 
plates (the Pacific, Philippine Sea and Nasca plates) which are moving rapidly 
relative to each other and with respect to most other plates, though they contain 
no, or almost no, continental crust. So it is clear that  continental radioactivity 
cannot maintain their motion. Furthermore, the relative velocity between plates 
consisting entirely or principally of oceanic lithosphere in fact appears to be 
more rapid than that between plates formed from continental lithosphere. 
Though these observations do not prove that continental radioactivity can be 
neglected as an energy source, they do show that there must be some other 
mechanism which produces more rapid motions. It is with this more powerful 
mechanism that this paper is principally concerned. 

Convection driven by radioactive heating in the mantle is described by the 
velocity u and the temperature T. A proper theoretical investigation requires 
the solution of four partial differential equations, three of which contain nonlinear 
terms, in spherical co-ordinates. Any attempt to solve the full equations by 
numerical methods on present computers would lead to little understanding of the 
problem and consume a vast amount of time. Numerical solutions to the simpler 
set of equations in Cartesian co-ordinates governing two-dimensional flow in a 
slab may, however, easily be obtained, and can provide a physical understand- 
ing of the possible forms the flow may take. Such solutions also indicate how heat 
is converted into the mechanical work required to maintain the plate motions. 
Although laboratory experiments may be used to test the accuracy of these 
computations, it appears unlikely a t  present that the geophysical problem can be 
modelled with sufficient flexibility in the Iaboratory to make numerical experi- 
ments unnecessary. Many complicated processes are taking place in the mantle, 
and there is no rigorous way of deciding which affect the large-scale mass motions 
and which do not. Any model must therefore be chosen using arguments basedon 
simplicity and physical intuition, and until extensive studies have been carried 
out disagreements about the importance of different processes are inevitable. 

The equations which govern the flow within the mantle are 

and the equation of state may be written in the form 

In  these equations p is the density, C, the specific heat a t  constant pressure, k 
the thermal conductivity, H the rate of internal heat generation owing to radio- 
active decay, r i j  the deviatoric stress tensor, S2 the angular velocity of the earth, 
P the pressure, a the coefficient of thermal expansion and (VT) ,  the adiabatic 
temperature gradient. @ is the apparent gravitational potential in the rotating 
frame of reference: 

( 5 )  CD = U+$IS2 x r12, 
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where U is the gravitational potential energy. A number of assumptions have 
already been made in deriving (1)-(4). The most important is that p is continuous 
within the mantle. This condition is probably not satisfied (Ringwood 1972a), 
and as Schubert & Turcotte (1971) have pointed out, the discontinuity in p 
may have an important influence on the circulation. 

Equations (1)-(4) cannot be solved unless 7ii and k can be expressed in terms 
of the other variables, and the form of H is known. The nature of the solutions 
will also depend on the numerical values assigned to other parameters (Turcotte 
& Oxburgh 1969), and therefore the properties of the mantle material involved 
in the motion must be known in some detail. All these questions depend on an 
accurate knowledge of the physical properties and mechanical behaviour of the 
rocks of the mantle. It is with these problems that the next section is concerned. 

3. Properties of the mantle 
3.1. Structure and composition 

Most of what is known about the structure of the mantle has been determined 
by measurement of the velocity of longitudinal (P) and shear ( S )  waves, generated 
by earthquakes and by underground nuclear explosions (see recent discussions 
by Johnson 1967; Archambeau, Flinn & Lambert 1969). The variation of the 
velocities and density with depth can be obtained from the travel times of body 
and surface waves, and the periods of free oscillation of the earth (see Gilbert 
1972). A summary of these results is contained in figure 2, which shows the varia- 
tion of P velocity with depth, obtained from Johnson (1967), for oceanic regions. 

A high-velocity layer above a depth of 80 km overlies a region in which the 
P-wave velocity is considerably reduced. The thickness of the high-velocity 
layer agrees with independent determinations of the thickness of oceanic plates 
(Sclater & Francheteau 1970); the region of reduced velocity below the plates is 
called the low-velocity layer and may contain a small fraction of melted material 
(Anderson, Sammis & Jordan 1972). When Gutenberg discovered the low- 
velocity zone he clearly recognized its tectonic importance, and proposed a model 
for the earth’s deformation produced by ice loads which is very similar to our 
present beliefs (Gutenberg 1959). The seismic wave velocity of the mantle above 
a depth of 120 km is dominated by the rapid increase of temperature with depth, 
whereas below this depth the temperature is more nearly constant and the struc- 
ture is governed by increasing pressure. The low-velocity zone is about 100km 
thick and is underlain by a thicker layer with a higher seismic velocity. The 
dominant minerals of this layer are probably the same as those of the lower part 
of the plates. At a depth of 400 km there is a region in which the velocity increases 
rapidly over a depth range of 30-50 km. Careful high-pressure laboratory ex- 
periments by Ringwood & Major (1970) and by Akimoto & Fujisawa (1966, 1968) 
have shown that a t  pressures of 1- 1 x 1O1O N m-2 (1 10 kilobars) and a temperature 
of 1000°C the crystal structure of Mg,SiO, changes from olivine to ,13 spinel. 
The olivine form of Mg,SiO, is the dominant material in the rock which forms 
the upper mantle, and therefore the change to a, spinel structure increases the 
mean density of the rock as well as its seismic velocity. The pressure a t  a depth of 
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400 km is close to 1.3 x 101ONm-2 and the temperature is about 1300 "C. Thus 
there is excellent agreement between laboratory observations and the structure 
of the mantle. 

The details (Ringwood 1972a) of the olivine to spinel phase change are of some 
considerable importance to the convection problem because the thermodynamics 
of such a transformation can have a large effect on the possible motions. The 
first problem is concerned with heat energy and has been discussed by Verhoogen 
(1965). He was concerned with vertical motions in a mantle whose temperature 
variation is governed by conduction and he determined the conditions under 
which convection could take place. The full marginal-stability problem has 
recently been discussed by Busse & Schubert (1971). They considered a univar- 
iant phase change only, and therefore required the temperature to be continuous 
across the phase change boundary. The phase change in the mantle is not uni- 
variant because the olivine is not pure Mg,SiO,, but contains some Fe,SiO, in 
solid solution. Also olivine is not the only mineral present. A better model is 
therefore a broad polyvariant phase change with perhaps a sharp univariant 
change within, corresponding to the change from spinel to modified spinel. 
Whether the temperature is continuous across such a transition zone depends 
upon the time necessary for heat to be conducted from one side to the other. 
The width of the zone is probably about 50 km and therefore the time required 
for heat to be conducted across it is N 1OMyr. The sinking slabs beneath the island 
arcs are descending a t  a velocity of w 50 mm yr-l and therefore move through the 
transition zone in N 1 Myr. Therefore the temperature across the transition zone 
will not be governed by conduction: the boundary conditions used by Busse & 
Schubert (1971) and by Schubert & Turcotte (1971) will not apply, and should 
be replaced by a temperature discontinuity of about 300 "C. This boundary 
condition cannot be generally applied, since the vertical velocities are unlikely 
to exceed 5 mm yr-l everywhere. Only for velocities of much less than 5 mm yr-1 
may Busse & Schubert's (1971) boundary conditions be used; the olivine-spinel 
phase change is an intermediate case. Within the sinking slabs, however, conduc- 
tion can be ignored and the resulting equations are easily solved when written 
in terms of potential temperature (McKenzie 1970). 

If convection canoccur through a phase change the changes in densitycancause 
a major increase or decrease in the buoyancy forces maintaining the motion 
(McKenzie 1968a). For instance, in the sinking slabs the temperature is less 
than in the surrounding mantle, and therefore olivine and spinel will be in equili- 
brium a t  shallower depths within the slabs than outside (Griggs 1972; Ringwood 
19723). If the transition occurs the density of the cold slabs and hence the driving 
force will increase (Griggs 1972). However, it  is not yet certain whether the phase 
change can occur under equilibrium conditions within the slab or whether 
the olivine phase becomes metastable. Although the P-wave velocity structure 
of the slabs is not yet known in sufficient detail to determine the depth of the 
transition layer, studies by Julian (Toksoz, Minear & Julian 1971; Davies & 
Julian 1972) suggest that Griggs's models may produce a greater contrast than 
that observed, and therefore favour metastable olivine. Further work should 
resolve this problem. From this discussion it is clear that the olivine-spinel 
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phase change may have an important influence on the convective problem, whose 
consequences are not obvious. 

The seismic velocity between 450 and 650 km shows little if any increase in 
P-wave velocity with increasing depth. This region is probably homogeneous, 
and laboratory experiments in this pressure range have not yet revealed any 
phase changes in likely mantle materials. A t  650 km, however, there is a further 
phase change to a phase which it has not yet been possible to study in the labora- 
tory. The exact arrangement of the atoms in the minerals of the mantle below 
650 km is therefore still unknown. Laboratory experiments on similar materials 
do, however, strongly suggest that the phase change is the result of a rearrange- 
ment of the oxygen atoms surrounding the silicon. Both olivine and spinel contain 
silicon atoms surrounded by four oxygen atoms at the corners of a tetrahedron. 
High-pressure forms of related compounds contain silicon atoms a t  the centre of 
six oxygen atoms a t  the corners of an octahedron, and this arrangement probably 
also occurs in Mg,SiO,. This material is likely to be very much stronger than 
spinel, since the corresponding phase of SiO, (stishovite) is almost as hard as 
diamond. This transition, like the olivine-spinel transition, is not a univariant 
phase change and is therefore unlikely to form a sharp boundary. 

The seismic velocity below 700km increases steadily with depth, and the 
increase agrees well with that expected from simple equations of state (Birch 
1952). The small variations in velocity observed by Johnson (1969) and other 
workers (see Hales & Herrin 1972) probably partly arise from lateral variations 
in upper mantle velocities which have become confused with radial variations. 

Lateral variations of seismic velocity are most obvious in the plates since the 
rocks which form the upper half of the continental plates have slower P-wave 
velocity than those which form the similar part of the oceanic plates. There 
is also some seismic evidence (Brune & Dorman 1963) that the plate thickness 
beneath old continental regions is greater than that beneath the deep oceans. 
The only clear lateral variations yet discovered in the mantle beneath the plates 
are the high seismic velocities in the sinking slabs (Cleary 1967; Davies & 
McKenzie 1969; Toksoz et al. 1971; Davies & Julian 1972). Such variations arise 
because the slabs are colder than the surrounding mantle and have not yet 
provided any detailed information about the physical processes within the slabs. 
Careful studies of lateral variations of seismic velocities in regions distant from 
the sinking slabs, especially detailed studies of the depth of the transition layers, 
should provide information about non-hydrostatic conditions within the 
mantle. 

At present the only direct observations of motion within the mantle below the 
plates come from the study of earthquakes with depths greater than 70km. 
The mechanisms of these earthquakes are different from those of shallow shocks 
caused by plate motions, and have been discussed in some detail by Isacks & 
Molnar (1969,1971). They showed that the shocks were caused by fracture within 
the sinking slab, and not by motion between the slabs and the surrounding mantle. 
They also studied the stress distribution in all slabs for which mechanisms were 
available, and found that the direction of greatest principal stress was parallel 
t o  the dip of the slab for most earthquakes below 350 km. The stresses present 
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between 70 and 350 km were found to depend on whether the deeper part of 
the slab reached a depth of 600 km. I f  i t  did, then the greatest principal stress 
was parallel t o  the dip. The stress state in which the greatest principal stress is 
parallel to the dip of the zone is often called compression, whereas if the least 
principal stress is parallel to the dip it is known as tension. (These terms are 
somewhat misleading because all earthquakes in the slabs are the result of the 
release of shear stresses, and all principal stresses are negative everywhere.) 
The observed behaviour would be expected if the resistance to the movement 
of the slabs is greater between 350 and 700 km than above 350 km, and if the 
resistance increases sharply a t  a depth of 600-650 km. 

The close correlation between the stress state and the depth of the phase 
changes suggests that the resistance to deformation is different for the olivine, 
spinel and post-spinel phases. The deeper phase change is particularly important, 
since there is no convincing evidence that the detached boundary layer pene- 
trates below 700km anywhere within the earth. Isacks & Molnar (1971) have 
discussed two possible causes for the existence of this boundary. The f i s t  is that 
the resistance of the post-spinel phase to deformation is considerably greater than 
that of the spinel. Though such a difference in behaviour would be expected from 
the properties of stishovite, the properties of the post-spinel phase could be very 
different. The other explanation of the absence of earthquakes below 700km 
is that the spinel t o  post-spinel change absorbs heat. The phase change would 
then occur deeper in the sinking slab than in the surrounding mantle, and the 
resulting buoyancy force could prevent penetration. However, most phase 
changes to denser forms a t  higher pressures give out heat, and therefore the 
second explanation is a t  present less likely than the first. Whatever the reason, 
the observations on sinking slabs show that even the thermal and mechanical 
boundary layers are unable to penetrate below 700 km, and therefore the con- 
vection which maintains the plate motions is restricted to the mantle above 
700 km. If the lower mantle is strong then the appropriate boundary condition 
a t  700 km is no slip for upper-mantle convection; if, however, the boundary is the 
result of the thermodynamics of the phase change the boundary condition will 
depend on the behaviour of the mantle below. 

3.2. Viscosity of the lower mantle 

Various authors (Macdonald 1963; McKenzie 1966) have argued that the vis- 
cosity of the lower mantle could be estimated from the magnitude of the earth’s 
non-hydrostatic bulge. The argument depended on the gravitational energy of the 
non-hydrostatic bulge being considerably greater than that of other harmonics 
of the non-hydrostatic gravity field. Goldreich & Toomre (1969) have demon- 
strated that this conclusion depends on the axis used to express the spherical 
harmonics. They argued that the present magnitude of the non-hydrostatic 
bulge is the consequence of polar wandering so as to maximize the moment of 
inertia about the rotational axis. If polar wandering is to occur then this places 
an upper limit on the viscosity of the lower mantle. 

The difference between these authors has not been resolved, since each model 
is internally self-consistent though they are mutually exclusive. If the kinematic 
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viscosity of the lower mantle is greater than 6 x 1022m2s-1, polar wandering is 
not possible and so the gravity field cannot be related to the rotation axis. Then 
the magnitude of the non-hydrostatic bulge is larger than would be expected for 
a random choice of axis. Goldreich & Toomre have not disproved this argument 
by demonstrating that there exists an axis through the equator which also 
has a large non-hydrostatic bulge, since the rotational axis can be a special 
axis only if the gravity field is affected by rotation. Then, if the non-hydrostatic 
bulge is caused by a lag between the true figure of the earth and the equilibrium 
figure, the viscosity of the lower mantle must be greater than 6 x 1022m2s-1. 

If, however, the viscosity is less than 1.5 x 1021m2s-1 polar wandering can 
occur and will also result in a large non-hydrostatic bulge. So these complicated 
arguments only show that the viscosity of the lower mantle cannot lie between 
1.5 x 1021 and 6 x 1022m2s-1. This result is not very relevant to the question of 
convection in the lower mantle. 

3.3. Temperature gradients in the mantle 

A discussion of the variation of temperature within the upper mantle properly 
belongs in 6 6, since the temperature variation is not required for the convection 
calculations but is derived from them. We include it here because there is no 
published account of how the temperature variation can best be determined from 
the geophysical observations now available. Although the temperature a t  the 
base of the plates cannot be directly measured, the vertical velocity of lava 
rising to the surface along the axes of oceanic ridges and into volcanic calderas 
such as those of Hawaii is sufficiently rapid for cooling to be neglected. This 
argument is supported by the remarkable constancy of the temperature (1 150- 
1200 "C) of the tholeiitic magma erupted. This must therefore be the tempera- 
ture of the mantle below the surface thermal boundary layer. The region below 
this is actively convecting, and so the temperature gradient will exceed the 
adiabatic gradient of 0.3-0.5 "C km-l. This gradient has been used to extrapolate 
the temperature of 1150 "C from the base of the thermal boundary layer to the 
first phase change a t  a depth of about 400km (figure 2). At this depth there are 
two other independent estimates available for the temperature. The first is ob- 
tained by using the phase diagrams for the olivine to spinel transition (Akimoto 
& Fujisawa 1966, 1968; Ringwood & Major 1970) and requiring the transition 
to occur a t  a pressure of 1-3 x 10'ON m-2. This condition gives a temperature 
of about 1600 "C. The second estimate is derived from the electfrical conducti- 
vity of the upper mantle (Banks 1969). Though Parker (1971) has shown that 
Banks's observations do not permit the conductivity to be estimated with any 
accuracy at  most depths, Parker's figure 3 shows that the conductivity a t  a depth 
of 400-5OOkm is well determined. Banks (1969) combined his estimates of the 
conductivity with estimates of the activation energy to show that the tempera- 
ture was probably between 1150 and 1500°C. Therefore both these estimates 
agree well with the adiabatic extrapolation in figure 2. Below a depth of 500km 
there is no reliable method of estimating the temperature. The solid line in 
figure 2 is an estimate of the adiabatic temperature distribution, but with the 
present ignorance of the nature of the phase change a t  650 km even the sign of the 
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(a)  Values of parameters in the mantle 

Olivine Spinel 

k 
P 
KT 
c, 
a 3.3 x "C-' (Skinner 1966) 1.9 x 10-6 OC-1 
y = aKJpC, = 1.1 

4.2 W in+ "C-' (Fujisawa et al. 1968) 
3.3 x lo3 kg m-3 (Mizutani et al. 1970) 
1-3 x 10*1 N nir2 (Mizutani et al. 1970) 
1.2 x lo3 J kg-l O C - l  

6.3 W m--2 "C-l 
3.6 x lo3 kg m-3 
2-5 x 1011 N m--2 
1-2 x lo3 J kg-l OC-' 

1.1 
( b )  Values used in calculations 

K = k/pC, = 1.5 x m2 s-l 
p = 3.7 x lo3 kg m-3 

G ,  = 1.2 x lo3 J kg-l O C - '  

g = 1 0 r n r Z  
v = 2 x lo1' m2 s-l 
a = 2 x 10-5 OC-1 

Surface heat flux, f = 5-85 x W m--2 

d = 7x102km 
TABLE 1 

temperature change a t  this depth may be in error. The dashed line is an estimate 
of the change in the mean temperature produced by vigorous convection (see 
36).  This change is insufficient to be observed by present geophysical methods. 

3.4. Parameters of the upper mantle 

Thermal properties. The physical properties which govern the convection in the 
upper mantle are those of olivine and spinel. Those of olivine have mostly 
been measured in the laboratory, but the spinel phase can only be synthesized 
a t  high pressure and much less is a t  present known about its properties. Fortu- 
nately the spinel phase of Fe,SiO, is easily formed, and the corresponding proper- 
ties of Mg,SiO, spinel can be estimated from 

MCM~,S~O,(SP)I - - ~ [ ~ e , s i o , ( s p ) i  
M[Mg,Si0,(01)] M[Fe,SiO,( Ol)] ' 

where M is any physical property. The sources of the physical parameters and 
their values are given in table 1 (a) .  Most of these difficult measurements were 
obtained by Akimoto and his collaborators. 

The values of a and p are those a t  room temperature and pressure. The thermal 
expansion coefficient decreases with pressure. Therefore the value for spinel is 
used as representative of the mantle (table 1 6 ) .  The major uncertainty in the 
value of a is caused by the olivine to spinel phase change. A t  depths where both 
phases are in equilibrium the effective value of a is about 3 x O C - 1 ,  and the 
phase change may therefore have a considerable effect on the nature of the con- 
vection. 

The density is well determined from laboratory measurements and from 
seismic velocity measurements within the earth. The specific heat is best ob- 
tained from Dulong & Petit's law (Slater 1939). The uncertainties in the values 
of both p and C, are small compared with those of a and K .  

The value of K is dependent on the size of the olivine and spinel crystals, and 
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on small amounts of impurities and inclusions within the crystals. Small propor- 
tions of other minerals besides olivine and spinel may also have an important 
influence on the thermal diffusivity. Therefore the values in table 1 obtained by 
Fujisawa et al. (1968) may not be representative of the rocks of the mantle. 
Since Fujisawa et al. found that the diffusivity increases with pressure, a value of 
1.5 x lo4 m2 s-l is used in all the calculations below, and the temperature de- 
pendence of K is ignored. This value is much smaller than that generally used in 
papers published before Fujisawa et al. made their measurements because the 
heat transfer by photons had previously been overestimated. A series of measure- 
ments on the opacity of olivine a t  high temperatures (Fukao, Mizutani & 
Uyeda 1968; Fukao 1969) has shown that the absorption of photons with wave- 
lengths between 1.8 and 3-Opm increases by a factor of about 100between 300 
and 1300 OK. This change is caused by the broadening of an iron absorption band 
with increasing temperature, and prevents radiative conductivity from domi- 
nating that due to phonons. The conductivity calculated from the absorption 
measurements now agrees reasonably well with that observed directly (Fukao 
et al. 1968; Kanamori, Fujii & Mizutani 1968). 

Viscosity. Few problems in geophysics have generated as much controversy as 
the relation between the rate of deformation and the shearing stress. Perhaps 
the principal difficulty is that experiments cannot be carried out at either the 
high pressures or the low strain rates a t  which the mantle is being deformed and 
therefore all arguments must be based on an extrapolation of results obtained 
under very different conditions. As Goetz ( 197 1) has remarked, extrapolation of 
any creep results outside the range determined by experiments is very uncertain. 
Despite these uncertainties there is now considerable agreement between dif- 
ferent authors on the processes involved, and also between theory and experi- 
ment. Experiments a t  atmospheric pressure and high temperature on the defor- 
mation of metal oxides have been reviewed by Gordon (1965), McKenzie (1968b) 
and Sherby & Burke (1968). Since the strength of perfect crystals is two or 
three orders of magnitude greater than that of most solids under laboratory 
conditions, most deformation involves the movement of imperfections in crystals. 
The simplest imperfections are point defects, such as vacancies and interstitial 
atoms. Movement of interstitial atoms down pressure gradients or of vacancies 
in the opposite direction results in deformation. Deformation of this type can 
only take place if material can be transferred from one grain boundary to another 
and therefore the rate decreases with increasing grain size. In  contrast, most 
deformation of solids depends on the motion of line defects such as screw or 
edge dislocations. The creep behaviour of metals a t  most temperatures and 
stresses depends on the ability of dislocations to move through crystals and has 
therefore been carefully investigated (see Read 1953). It is only a t  temperatures 
close to the melting point and shear stresses of about lo5 N m--2 that most metals 
deform by diffusion of point'defects. The movement of dislocations is controlled 
by the past history of the metal, the presence of small quantities of different 
crystals and many other complications. Fortunately a t  high temperatures the 
behaviour of most materials becomes relatively simple because dislocations 
can climb by transferring atoms either to or from the dislocation by migration of 
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point defects. Climb permits the dislocations to avoid obstructions to their 
motion such as other dislocations or impurities, and therefore at  high tempera- 
tures creep is controlled by diffusion of atoms even though the displacement 
itself takes place by the glide of dislocations. The important difference between 
diffusion creep and creep produced by dislocation glide is the stress dependence 
of the rate of deformation. The diffusion creep rate d under a shearing stress CT 

is given by 

where a is the mean radius of crystals, C a constant of order unity, Ic, Boltzmann’s 
constant, V ,  the activation volume and D(P,  T) is a diffusion coefficient, whereas 
creep controlled by dislocation climb is governed by 

gcc Ddn, (7) 

where n 3 3 and decreases with increasing temperature and decreasing stress. 
Therefore, whereas diffusion creep may be described by a Newtonian viscosity, 
creep controlled by dislocation climb is governed by a more complicated con- 
stitutive relationship which may be obtained from (7) (Prager 1961, p. 139). 
Recent papers on creep in the earth’s mantle (Gordon 1965, 1971; McKenzie 
1968b; Weertman 1970; Carter & Ave’Lallemant 1970; Ave’Lallemant & 
Carter 1970; Rayleigh & Kirby 1970) are in general agreement that diffusion 
creep occurs a t  low shearing stress, but as the stress is increased the line defects 
become mobile and govern the deformation. Both types of creep are rate-limited 
by diffusion (Gordon 197 1). The main disagreement between these authors 
concerns the value cc required to cause the dislocation movements to dominate 
diffusion creep. Weertman (1970) believes that cc z 103Nm-2 whereas McKenzie 
(1968b)andRayleigh &Kirbyfl970)arguethat ccliesbetween 106and 107Nm-2. 
The difference is principally the result of different choices of grain size. Weert- 
man uses 220 mm, whereas Rayleigh & Kirby use a value of 10mm derived from 
examination of pieces of upper mantle carried to the surface by basaltic lava. 
Rayleigh & Kirby’s arguments are based wherever possible on experimental 
results and on direct observation, and are therefore more likely to be correct than 
those of Weertman. The shearing stress dividing the creep regimes will therefore 
be taken as lo7 N m-2 for the mantle below the plates. If this value of cc is correct 
the motion of most of the mantle can be described by a viscosity. However, 
deformation of the plates and the sinking slabs occurs a t  stresses between cc and 
10cc and therefore must be governed by dislocation motions. This suggestion 
is confirmed by the observations of Ave’Lallemant & Carter (1970)’ who showed 
that most olivine from the lowest part of the plates shows evidence of dislocation 
glide. Some olivine nodules in basalt lavas and in the fragmented rock which 
occurs with diamonds have probably come from below the plates, yet still show 
evidence of deformation a t  stresses above cc. These observations suggest that 
both deformation mechanisms are important, but for simplicity only diffusion 
creep described by a viscosity is considered below. 

Both creep mechanisms are strongly temperature dependent, principally 
because both are rate-limited by vacancy diffusion. Weertman (1970) and Gordon 
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(1971) have discussed the variation of creep rate with depth; both agree that 
the minimum resistance to deformation occurs within the upper mantle, and 
that the plates and the lower mantle are much more resistant. This variation 
is therefore essential to the formation of plates, and must be included in any 
realistic calculations. Our calculations do not include any variation of viscosity 
with depth or temperature for reasons discussed below. Instead we adopt an 
appropriate constant value for the viscosity. The mean viscosity given in table I 
is that which O’Connell (1971) showed could best account for the response of 
the earth to surface loads which were imposed during the last glaciation. 

In  the past there has been much discussion by Jeffreys and others (see, for 
instance, Jeffreys 1963, 1971) on the value of the finite strength of the mantle, 
and on the nature of the creep which took place when this strength was exceeded. 
The existence of diffusion creep makes this argument irrelevant; the mantle is 
sufficiently hot for diffusion to be important, and therefore creep can occur a t  all 
stresses. Furthermore the expressions used by Jeffreys to describe creep apply 
only a t  low temperatures and pressures, and probably describe deformation 
caused by the formation of open cracks (Goetz 1971). 

Radioactive heat generation. A less controversial but important question is the 
rate of radioactive heat generation by mantle rocks. If the heat flowing through 
the earth‘s surface is principally generated below 700 km, then the form of the 
flow is quite unlike that which results from heat generation solely from within 
the outer 700 km of the earth’s mantle. The basalts erupted along the ridges are 
the result of partial melting of mantle, and measurements of the concentration 
of K, U and Thin the rocks which remain after melting show that these elements 
are concentrated in the melt. The radioactive heat generation of the mantle can 
therefore be obtained if the concentration of these three elements in oceanic 
basalts is known, and if the fraction of the mantle which melts beneath the ridges 
can be determined. 

Engel & Engel (1970) and Melson & Thompson (1971) have determined the 
concentration of K, U and Th in oceanic basalts. Using the energy generation 
rates given by Wetherill (1966) the corresponding rate of heat generation is 
between 2.3 and 2.8 x 10-11 W kg-l. This value is not very reliable since the con- 
centration of all three elements is very much smaller than that in most common 
rocks, and is therefore difficult to measure by the usual methods. In  view of the 
importance of the rate of heat generation by oceanic tholeiites, a detailed study 
of the distribution of these three elements is badly needed. 

If the mean heat flow through the ocean basins of 5.8 x 10-2Wm-2 (von 
Herzen & Lee 1969) comes from energy generated uniformly throughout the 
mantle, then the rate required is 7 x W kg-l. Therefore if the mean com- 
position of the mantle is constant oceanic basalts are the result of 25-30% 
partial melting, with all the K, U and Th concentrated in the melt. If radioacti- 
vity is concentrated in the upper mantle, above 700 km, then 100 % melting is 
required. Most authors who have considered the origin of oceanic basalts have 
suggested that between 15 and 40% partial melting has occurred (Gast 1968, 
1972; Schilling 1971). In  that case, approximately equal amounts of heat come 
from the mantle above and below 700 km. 

31-2 
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4. Numerical formulation of the problem 
In  the last two sections we have reviewed both the geophysical evidence for 

convection in the earth's mantle and the properties of the region in which motion 
occurs. We are now in a position to  set up a variety of simplified model problems 
which can be solved in order to illuminate the processes occurring in the rock of 
the mantle. In  this section we shall first derive the partial differential equations 
governing the flow. These equations are nonlinear and cannot be solved by ana- 
lytical techniques; we therefore describe the numerical methods that have been 
used to solve them. Even with the aid of a computer i t  is necessary to make many 
drastic and unrealistic assumptions. The direct relevance to plate tectonics of 
our numerical experiments is therefore in some doubt. However, they do pro- 
vide a beginning to  the systematic study of convection in a fluid with the proper- 
ties of the earth's mantle. 

We shall assume that motion is confined to the upper mantle, above 700km. 
It can then be shown (Tozer 1965; McKenzie 1968a) that the Boussinesq approxi- 
mation is valid. The flow is effectively incompressible and variations of density 
are significant only in the buoyancy force, which drives the motion against 
friction. Convection is then governed by the Boussinesq approximation to (1)-(5) 
and diffusion creep allows a relationship of the form 

aui aui 
rii =pv  -+- 

(axi ax) 

between the deviatoric stress and the rate of strain, where v is a kinematic: 
Newtonian viscosity. The characteristic decay time associated with a viscosity 
of lO17m2s-1 is only 10-5s and the Reynolds number is typically For 
these reasons inertial and Coriolis forces are negligible and the left-hand side of (1) 
may be ignored. For buoyancy-driven flow this is equivalent to assuming that 
the Prandtl number pC, v /k  is infinite. 

The heat flow equation (2) includes a term rdj aui/axj corresponding to viscous 
generation of heat. This effect is in general negligible if the convecting layer is 
shallow compared with the temperature scale height, a necessary condition for the 
Boussinesq approximation to be valid. We shall therefore ignore this term, as a 
first step, even though the local effects of viscous heating in narrow plumes may 
have a significant effect on the pattern of convection. 

The adiabatic temperature gradient 

( d T / d z ) ,  = -~LxT/C,  (9) 

gives a temperature increase of about 300 "C over 700 km, which is roughly equal 
to the temperature difference across the thermal boundary layer in our computa- 
tions. The heat flux conducted down this gradient is only 4 %  of the total. We 
shall assume that this flux is constant. Then, if we ignore the dependence of p 
on the adiabatic temperature variation, we may drop (VT) ,  from (2). However, 
the adiabatic gradient must be included in comparisons of numerical results with 
temperatures in the mantle. 

For the remainder of this paper we shall make the simplifying assumption that 
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the specific heat, the internal heating rate, the coefficient of expansion, the 
thermal conductivity and the viscosity are all constant. (The latter is a serious 
restriction: the viscosity varies by at least an order of magnitude in the upper 
mantle and the effects of a variable viscosity have been investigated by Torrance 
& Turcotte (1971) and Turner (1973).) Equations (1)-(3) can then be rewritten in 
the form 

VV'U = p;'VP+a(T-T,)g, (10) 

a q a t  = - v . ( T U )  + E + K V ~ T ,  (11) 

v.u = 0, ( 12) 

where the thermometric internal heating rate 6 = H/C,p, the thermometric 
conductivity K = k/C,p and g = V@. The pressure can then be eliminated by 
taking the curl of (10) : 

V V ~ O  = aVT x g, (13) 
where the vorticity o = V x u. Thus the equation of motion reduces to a balance 
between generation of vorticity by the buoyancy torque and viscous dissipation. 

Although these equations should be solved in a spherical shell, the earth's 
curvature can probably be ignored if convection does not extend below 700 km 
or 10 yo of the earth's radius. Moreover Hsui, Turcotte & Torrance (1972) have 
solved the same equations (lo)-( 12) in spherical co-ordinates and have obtained 
results similar to those discussed below. Thus it is possible to consider a plane 
horizontal layer, and calculations are considerably simplified by adopting Car- 
tesian rather than spherical co-ordinates. The gravitational acceleration g may 
then be assumed to be constant, acting in the negative-z direction. Such a plane 
layer adequately represents small-scale convection but spherical geometry may 
have a major influence on the large-scale flow associated with plate motions. 

In  order to reduce the computing time needed to solve a problem we shall 
further simplify the calculation by assuming that the flow is restricted to the 
x ,  z plane and independent of the y co-ordinate. From (12), the velocity can then 
be described by a stream function $ such that 

u = (u, 0, w) = ( - a$/az, 0,  a@/ax); (14) 

then the vorticity 

and (13) reduces to 
o = (0, w ,  0 )  = (0, - V2$, 0)  

v2w = (ga/v) (aT/ax). 

The simplest boundary conditions are obtained by confining the flow to a 
rectangular region 0 < x < L, 0 < z < d such that the normal velocity and the 
tangential stress both vanish on the surfaces z = 0, d, and assuming that the 
stream function is an odd function of x and periodic, with period 2L. Then 

and 

We shall assume that the temperature is fixed on the upper boundary and that 
either the temperature or the vertical temperature gradient is prescribed at the 

$-= 0, w = 0 (2 = 0,d) (17) 

+o,  w = o ,  aT/ax=o ( X = O , L ) .  (18) 
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lower boundary. The assumption of free (slippery) boundaries is computationally 
convenient, though fixed boundary conditions (u = 0 )  a t  z = 0 would be more 
realistic if the post-spinel phase is effectively solid. 

It is preferable to use physical, dimensional, variables when relating the 
numerical experiments to geophysics; and we use throughout the values listed in 
table 1. However, it is more convenient to carry out the computations with 
equations in dimensionless form. All lengths should clearly be measured in terms 
of the depth d ;  temperatures and times can be expressed in terms of character- 
istic quantities Tl and 7 respectively. From (16) a typical velocity is 

U = gaTld2/v (19) 

(20) 

(x',  2') = d-l(x, z), t' = t / ~ ,  T' = (T - To)/Tl, (21) 

and we define T as the turnover time: 

T = d/U = v/gaTld. 

We now introduce dimensionless (primed) variables as follows: 

where Tl is arbitrarily chosen to be 1 "C and To is the mean temperature of the 
upper boundary. Then the dimensionless conductivity 

K' = ~v/gaT,d~ = kv/pcpgaTld3, 

B' = eulgaT2,d = Hv/pC,guT? d 

(22) 

(23) 

the energy generation rate 

and the normalized cell width 
A = Lid. (24) 

We shall use these dimensionless quantities, suppressing primes, for the rest of 
this section only. 

In  order to investigate convection we have then to solve a single time-depen- 
dent equation 

over the region 0 < x 6 A, 0 6 z 6 1, where the velocity u is derived, using (14), 
from a stream function satisfying the biharmonic equation 

aT/at = - V . (Tu)  + E + K V ~ T  ( 2 5 )  

V4$ = - aT/ax, (26) 

subject to boundary conditions (17) and (18). 
The partial differential equations (25)  and (26) are solved by fhite-difference 

methods, using techniques developed by Moore, Peckover & Weiss (1974) for 
studying time-dependent two-dimensional convection. The variables T and $ 
are represented on a grid with uniform spacing Ax = Ax = h; let x j  = jh, zk = kh 
andtn = nAt, wherej = 0,  1, . .., N, and k = 0,1, . . ., N,, and put TXk = T(xj,  Zk, tn) ,  

etc. Then (25 )  becomes 



Convection in the earth's mantle 487 

X 0 X 0 X 0 

0 X- 0- x k + l  

X O k  

\ 

0 x-0'-x '0 X k-1 
i /' 

X 0 X 0 X 0 
j-1 j jt-1 

FIGURE 3. The mesh for numerical integration. x , points with j + k even, at which T", 
on+* and $n+& are calculated; 0, points withj+k odd, a t  which Tn+k, W" and $" are calcu- 
lated (where m is an integer). The temperature T;:l is obtained from (27), which is derived 
by considering the fluxes at  time tn+* across the box centred on (x j ,  z k ) .  This is used to esti- 
mate aTpx at the circles, whence oy$tk, etc., are obtained from (29), which relates values 
at points connected by the broken lines; @$:,k, etc., can then by calculated similarly from 
(30). These values are then used t o  give T ; I t k  and so and $;:#. 

The difference equation uses the leapfrog scheme on a staggered mesh (Roberts 
& Weiss 1966); it  is centred in space and time and has second-order accuracy. 
The values of T required for (27) are defined on a staggered mesh: a t  integral 
time levels (n  = 0,1,2, ...) TZL is only defined at  points with j + k :  even; a t  
intermediate times (n = g, #, . . .) Tx is defined on the interlocking mesh of points 
with j + k odd, as depicted in figure 3. These values of the temperature suffice 
to calculate T explicitly for n = &, 1, #, . . . , provided that the stream function is 
also known. 

The boundary conditions on the velocity make it convenient to solve (26) as two 
coupled Poisson equations 

v20 = m i a x ,  v2@ = --o ( 2 8 )  

with homogeneous Dirichlet boundary conditions on @ and w .  These equations 
are expressed in the form 

W i + l , k + l + w j + l , k - l + w ~ - l , k + l ~ w j - l , k - l - 4 w j , k  = h ( q + l , k - q - l , k ) ,  (29) 

@j+l,k+l+ @j+l,k-l+ @j-l,k+l + @j-l,k-l- 4@j, k = - 2h2wj,k* (30) 

The stream function @ is obtained by successively solving the implicit equations 
(29) and (30) using fast Fourier analysis in the x direction and tridiagonal elimina- 
tion in the z direction; the boundary conditions on the vorticity can be applied 
without synthesizing w from its Fourier components. This process yields values 
of @ a t  points adjacent to those where T is defined (see figure 3) and inspection of 
(27) shows that these are precisely the values required to describe the advection 
of temperature. 

The accuracy of these difference schemes is analysed in detail elsewhere (Moore, 
Peckover & Weiss 1974). In  fact the overall accuracy of the solution to the bi- 
harmonic equation is comparable with that of the interpolated solution discussed 
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by Moore et al., though the error is more anisotropic, since certain circulatory 
modes are preferentially enhanced. It is essential to ensure that the mesh used 
for differences has adequate resolution. The horizontal boundary layers are 
generally thinner than the vertical (Moore & Weiss 1973). Hence we use the 
horizontally averaged temperature field t o  define the boundary-layer thickness 
as the distance across which 90 yo of the change in occurs. Investigations by 
Moore & Weiss (1973) show that computations are only reliable (in the sense 
that the overall heat flux is accurate to within 1 yo) provided that there are at 
least three mesh intervals across any boundary layer. 

5. Results of the numerical experiments 
Thermal conduction could only carry a small fraction of the heat transported 

through the mantle; the mathematical problem is thoroughly nonlinear. 
Although linearized solutions of (1)-(4) have been studied in some detail and 
various interesting nonlinear problems have been solved, there has not yet 
been a systematic investigation of different forms of convection in a layer with 
infinite Prandtl number. In  this section we survey the fluid dynamics of two- 
dimensional convection between free boundaries. Since there is now extensive 
understanding of Rayleigh-Bknard convection, which has been reviewed by 
Brindley (1967) and by Spiegel (1971), we make use of the existing knowledge 
of this type of convection for comparison with our results. 

Most published work has concentrated on the behaviour of a fluid heated 
uniformly from below. In  the present work we have used several computational 
models all of which use (10)-(12). In  the simplest, convection is driven by an 
imposed horizontal temperature gradient; in others, the temperature or tempera- 
ture gradient is fixed a t  the lower boundary and the fluid is heated either from 
below or uniformly within. These models are undoubtedly too simple to reproduce 
the major features of plate motions. Nevertheless, they can behave in remarkably 
complicated ways and the results are a necessary preliminary to a proper physical 
understanding of fluid dynamics in the mantle 

5.1. Convection driven by horizontal temperature gradients 

In  the simplest models that we studied, convection was driven by an imposed 
horizontal variation of temperature, using (lo)-( 12) with E = 0. Since aT/ax + 0 
equation (16) shows that motion must occur: there is no static equilibrium state. 
In  addition to (17) and (18), the boundary conditions were 

AT cosnx/L (Z = d) ,  
T = {  

0 (Z = 0). 

This configuration can be described by a dimensionless Rayleigh number 

R, = ~ L x A T ~ ~ / K V .  (32) 

For R, < 1 advection of heat is negligible and T is therefore harmonic (Allan 
et al. 1967) : 

T = AT cos qx (sinh yz/sinh ql),  (33) 
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where q = ql/d = n/L. The equations are all linear and can be solved to give 
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-(2q1cothq,+ 1) (zcoshqz-d~othq~sinhqz)] (34) 
(Peckover 1972). 

The model permitted a range of results to be obtained, showing the effect of 
convection of heat on the form of the solution. This sequence is shown in figure 4 
for increasing values of the Rayleigh number. The first two cases (figures 4a, b )  
show the isotherms and streamlines for AT = 0.01 and 0-1 "C ( R H  = 4.58 and 
45.8). These are both very similar to the linear solution; only the T = 0 isotherm 
is distorted by the motion. As the horizontal temperature difference is increased 
to 1.0"C convection of heat becomes important and by 10°C a sinking plume 
appears beneath the cold region. When the temperature difference reaches 100 "C 
thermal boundary layers develop and these become thinner as AT is further 
increased. The main flow occupies a nearly isothermal region with a mean tem- 
perature TM < 0. The streamlines are less interesting: solving the biharmonic 
equation is an effective smoothing operation. Since the bottom boundary is 
maintained a t  T = 0 the fluid gains heat from below and a weak rising plume 
forms on the left-hand side of the box. This feature of the circulations shows 
most clearly in the vorticity field. 

To eliminate this effect, we also studied a modified version of the same prob- 
lem with the boundary condition 

aT/az = 0 (2 = 0) 

so that no heat flux crosses the lower boundary. This model compares better 
with convection caused by internal heating, as described below. Once again, 
when RIT < 1 the equations are linear and 

T = AT C O S ~ X  (coshqz/cosh ql), (35) 

{q2z(2d -2) coshqz+ [qt cothq,-q(z-d)]sinhyz}. (36) 8q3 cosh ql 

As can be seen from figure 5, the rising plume vanishes while the sinking sheet 
is thin and colder than TM. These features remain unchanged as the horizontal 
temperature variation is increased though the thickness of the boundary layers 
and the sinking sheet becomes smaller. Since the Prandtl number is infinite, 
shear instabilities are suppressed. A steady-state solution was found for all values 
of AT that were investigated. 

Qualitatively, the significant results of this set of experiments are the formation 
of a thin thermal boundary layer at the upper (active) boundary but not a t  the 
lower (passive) one, together with a cold sheet falling from the active boundary. 
The contrast between the upper and lower thermal boundary conditions destroys 
any symmetry in the solution. 

Two features of the temperature field when R H  2 20000 are of particular 
interest, Figure 6 shows the horizontally averaged temperature as a function of 
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L I 

(4 
T Id’ 

FIGURES 4(a) - (4 .  For legend see facing 

height. Except in the boundary layers the mean temperature gradient is positive 
everywhere even though the motion is maintained by the release of gravitational 
potential energy. The other related feature of figure 6 is thatthemean horizontally 
averaged temperature is strongly modified by the convection. The mean tempera- 
ture of most of the fluid is negative when convection is actively transporting heat. 

These results may be compared with those of Beardsley & Festa (1972) by 
noting that the governing equations are invariant if $, z and T are replaced by 
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i 
d 

T * 
FIGURE 4. Flow driven by a horizontal temperature variation imposed on the upper 
boundary [equation (31)] and with T' = 0 at the lower boundary. All boundaries are 
stress free and the dimensionless width is unity. Contours of T' are uniformly spaced with 
interval $AT'. 

Contour intervals for w' 
AT' RH t' A > 

(a) 0.01 4.58 31.7 1.07 x 10-4 (1.11 x 10-4) 5.53 x 10-4 
( 6 )  0.1 45.8 187.9 1.07 x 10-3 (1.1 1 x 10-3) 5.53 x 10-3 
( c )  1.0 458 171.4 1.05 x (1.11 x 10-2) 5.51 x 
(4 10 4 580 183.4 0.0319 (0.0728) 0.3959 
(e) 100 45 800 91-4 0.083 (0.392) 2.044 
(f) 300 137 000 12.7 1.155 (0-962) 5-002 
(9 )  1000 458000 6.1 0.433 (2.585) 10.773 

Contour intervals for @' 

(a) 0.028 x (0.737 x 2.239 x 10" 
(9) 0.0184 (0.0959) 0.3061 

The value of t' gives the dimensionless time taken to  reach the steady state (t' = 1 is 
equivalent to 45.5 Myr). The numerical experiments were carried out in the order (a)-(d) 
on a 24 x 24 mesh, with each steady-state solution used as the initial temperature distribu- 
tion for the next run; ( e )  was started from the conductive solution with AT' = 100, on a 
48 x 48 mesh and again successive steady-state solutions were used as initial temperature 
distributions for (f) and (9). 
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T 

-q 
-7 0 

I I  

(4 
w' f' 

FIGURE 5.  Boundary conditions as for figure 4 but with aT1a.z = 0 at z = 0. 

Contour intervals for w' 
A T  RH t' I- A \ 

( a )  10 4 580 80.14 0.032 (0.073) 0.324 
( b )  100 45 800 310.8 0.084 (0.392) 1.652 
(c) 1000 458 000 32.37 0.50 (2.59) 8.27 

Contour intervals for $' 
( a )  0.00217 (0.0060) 0.00817 
( b )  0.0039 (0.0223) 0.0262 
(c) 0.019 (0.047) 0.066 

Run (u) was started from the appropriate conductive solution and the resulting steady 
state used to give initial values for (b)  ; both were on a 24 x 24 mesh. Run (c) was started 
from the conductive solution on a 48 x 48 mesh. 

- $, - x and - T.  Thus if figures 4 and 5 are looked a t  upside-down the stream- 
lines and the isotherms are those for a fluid heated non-uniformly from below. 
A detailed comparison between our results and those of Beardsley & Festa is 
not feasible since they used u = 0 as a boundary condition on all but one boun- 
dary. The same remark applies to Somerville's (1967) calculations, for he used 
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1 

z’ 

1 0 
- 200 0 

I 

I 
-400 -200 

!li‘ 
0 

FIGURE 6. The mean horizontal temperature as a function of height (a) for the 
convection in figure 4 and (a) for figure 5. 

a box with a dimensionless width of ten and different temperature boundary 
conditions. Despite these differences all numerical experiments show the 
development of a thermal plume, the asymmetry of the streamlines and the 
growth of a nearly isothermal region. 

5.2. Convection in a layer uniformly heated from below 

Rayleigh-BBnard convection has been intensively studied for many years. 
The Rayleigh number R can be defined in terms of the heat flux E = pC,P 
that would be carried in the absence of convection: 

R = ~ c c P ~ ~ / K ~ v .  (37) 

For the classical thermal boundary conditions : 

the thermometric flux P = d T / d  and the Rayleigh number 

R = gaATd3/~v. (39) 

A static equilibrium solution exists and is stable for R < R,; when R = R, = ?7r4, 

convection first occurs in rolls with a normalized cell width A, = Lid = 4 2  
(Chandrasekhar 1961). 

The critical Rayleigh number R, is independent of the Prandtl number p and 
numerical investigations of finite Prandtl number convection have been made 
over the range 0.01 < p < 100 for R/Rc < 1000 (Fromm 1965; Veronis 1966; 
Moore & Weiss 1973). Numerical experiments with an infinite Prandtl number 
are discussed by Straus (1972) and Moore & Weiss (1973). The efficiency of con- 
vection is measured by the Nusselt number N ,  which is the ratio of the total flux 
carried to that which would have been carried in the absence of convection: in 
a steady state, 

N =-[wT-&], d - d T  
KAT 
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where the bars denote horizontal averages. For viscously dominated convection 
Moore & Weiss (1973) found that 

N z 1*96(R/RC)4. (41) 

This dependence can be obtained by a simple boundary-layer argument 
(Turcotte & Oxburgh 1967). The computations show that the bulk of the fluid 
is isothermal with a temperature TM M +AT. This isothermal region is contained 
between two horizontal boundary layers of thickness 8, with temperature 
gradients TM/S; on either side it is bounded by rising and falling plumes also of 
thickness S, within which generation of vorticity is balanced by viscous dissipa- 
tion. Within the horizontal boundary layers the horizontal convection of heat 
is balanced by the vertical diffusion; thus 

U(aT/ax) M K ( a Z T / 8 Z 2 ) ,  (42) 

whence u z ~ d / 6 ~ .  I n  the vertical plumes, 

so that w z gaSAT/v. But in the centre of the box T = constant, so that V2w s 0 
and we may take u M w M wd. Thence we obtain 

w z R%K/d, 6 z R-Sd, N M Ri (44) 

in agreement with the computed results. 
Contours of T ,  w and $ for several Rayleigh numbers are included in figures 

7-1 I .  The symmetric boundary conditions ensure that these all have point 
symmetry about the centre of the cell when appropriate intervals are chosen. 
The boundary layers become narrower as the Rayleigh number is increased. 

All the results so far have asssumed that the tangential stress vanishes a t  the 
boundary, a condition that has only once been realized in an experiment (Gold- 
stein & Graham 1969). The more realistic case of rigid boundaries, where u = 0, 
has been extensively studied both theoretically (Chandrasekhar 1961 ; Fromm 
1965; Schluter, Lortz & Busse 1965; Busse 1967; Plows 1968) andin experiments 
(Rossby 1969; Krishnamurti 1970a, b ;  Willis & Deardorff 1970; Busse &White- 
head 1971). We shall discuss some of these results later in this section. 

5.3. Convection in aJEuid heated from within 

The most extensive numerical experiments were carried out on a fluid layer 
heated from below or within ( E  $: 0 in ( 1  I ) ) ,  but with the heat flux rather than 
the temperature held constant on the lower boundary. The free boundary con- 
ditions (17)  and (18) still apply but (38) must be replaced by 

T = 0 (Z = d ) ,  
aTlaZ = - f /K  (2 = 01, 

where f is the thermometric flux through the lower 
heat flux 

E = pC,P = pC,(f + ~ d )  

(45) 

boundary. Then the total 

(46) 
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and the corresponding Rayleigh number is, from (37), 

As in the previous example, there is always a static equilibrium solution with 

since only the temperature gradient enters the linearized equations, it  is more 
appropriate to define a mean temperature gradient in terms of the notional 
temperature difference 

together with a modified Rayleigh number 

where the ratio of heat produced internally to the total heat flux is 

R = ( g o l d 4 / K 2 V )  ( f+ca) .  (47) 

T = K - l ( d - Z )  [ f + + E ( a + Z ) l ;  (48) 

AT = ~ - l d ( f +  id)  (49) 

(50) 

p = Ea/(ea+f).  (51) 

R, = ~ c c A T ~ ~ / K v  = (1 - i p )  R, 

The perturbation equations can be derived in the usual way (Sparrow, Gold- 
stein & Jonsson 1964; Roberts 1967). The critical Rayleigh numbers for fixed 
boundaries and thermal boundary conditions (38) and (45) were obtained by 
Sparrow et al. (1964) and Roberts (1967) respectively; these values together with 
the critical wavenumber a = r / A  are listed in table 2(a ) .  We have computed 
critical Rayleigh numbers as functions of ,u (0 6 p d 1) for various boundary 
conditions, using the method of Sparrow et al., and these results are also shown 
in table 2. The critical Rayleigh number depends on the boundary conditions and 
is least for free boundarieswith a constant flux, when the constraints are weakest. 
Although the critical value of R depends on p, the corresponding value of the 
modified Rayleigh number R, changes only slightly and in one case (free boun- 
daries a t  fixed temperatures) by less than 1 %. For given boundary conditions, 
the stability criterion is mainly determined by the average temperature gradients; 
this is consistent with Krishnamurti’s (1968 a )  result, that for p < 1 the critical 
values of R, are approximately 657.5-2 .0 ,~~  and 1707-7-2.7,~~ with free and fixed 
boundaries, a t  constant temperatures, respectively. 

A sequence of two-dimensional numerical experiments was carried out using 
a square box ( A  = I), in order to compare results for p = 0, 0.5 and 1.0 with 
Rayleigh-Bknard convection carrying the same heat flux. Unless stated other- 
wise all models were started by introducing a temperature perturbation that 
produced a single convection roll occupying the whole box; shorter wavelength 
rolls could only develop by instabilities of this single roll. Contours of the tem- 
perature, the vorticity and the stream function for five different values of the 
mean flux through the upper surface are shown in figures 7-11. Details of the 
appropriate Rayleigh numbers are provided in table 3; the last column gives 
the ratio R/Rc that would be needed to give the same flux in the Rayleigh- 
BQnard problem and so allows a better estimate of the boundary-layer thickness. 
It can be seen that the Rayleigh number R defined by (47) exaggerates the non- 
linearity of the problem; in fact the corresponding Rayleigh-BQnard parameter 
is proportional to RQ. 

The calculations were carried out on grids with 24 x 24 or 48 x 48 intervals 
and integrations were continued until a steady state had been attained. For all 
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z =  0 
r > 

Constant temperature Constant flux 
L 

h r > ----7 

k. 

0 
1.0 

0 
0.2 
0.4 
0.6 
0.8 
1.0 

0 
0.1 
0.2 
0.3 
0.4 
0-5 
0.6 
0.7 
0.8 
0.9 
1.0 

U R Rl U R 
(a) Both boundaries fixed 

3-12 1707.7 1708 2.55 1295.8 
3.13 3390.0 1695 2.63 2772.3 

(b) Upper boundary free, lower boundary fixed 

2.68 1100.7 1101 2.22 816.7 
2.68 1211.8 1091 2.22 906.8 
2-68 1347.6 1078 2.23 1018-8 
2.68 1517.1 1062 2-23 1162.1 
2.68 1734.6 1040 2.24 1351.5 
2.68 2022.9 1011 2.26 1612.6 

2.22 
2.22 
2.22 
2.22 
2.22 
2-22 
2.22 
2.22 
2.22 
2.23 
2-23 

(c) Both boundaries free 

657.5 658 1.76 
692.1 658 1.76 
730.5 657 1.76 
773.4 657 1.76 
821.6 657 1.76 
876-2 657 1-77 
938.4 657 1-77 

1010.4 657 1.77 
1093-4 656 1-78 
1191.5 655 1-78 
1308.5 654 1-79 

384.7 
407.5 
433.1 
462-1 
495.3 
533-7 
578.4 
631.1 
694.4 
771.6 
867.8 

Rl 

1296 
1386 

817 
816 
815 
814 
811 
806 

385 
387 
390 
393 
396 
400 
405 
410 
417 
425 
434 

TABLE 2. Critical Rayleigh numbers for marginal stability 
(upper boundary at  constant temperature) 

the results in figures 7-11 adequate resolution was achieved by ensuring that 
there were a t  least three intervals across every boundary layer. The accuracy 
of the coarser grid for R 5 lo6 was confirmed by comparison with the finer mesh. 

Consider f i s t  the models in which the flux is entirely from below (p = 0). 
The isotherms are inclined to the lower boundary but as the Rayleigh number 
is increased the thickness of the thermal boundary layer diminishes. Whether 
the temperature or the flux is specified on the lower boundary has rather little 
effect on the flow a t  all Rayleigh numbers. What differences there are are more 
apparent in the vorticity field. In the fixed-flux experiments the temperature at 
the centre of the rising plume is greater than in the Rayleigh-Bknard cases; 
hence the horizontal temperature gradient and the vorticity are both greater 
in the lower left-hand than in the upper right-hand parts of the boxes. 

The main features of the flow can again be understood by applying a simple 
boundary-layer analysis. The argument is similar to that for Rayleigh-B6nard 
convection, except that the temperature difference AT across the plumes must be 
related to the total heat flux. 

wAT8 NN f d .  (52 )  
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FIGURE 7. Convection in a region whose dimensionless width is unity with insulating 
sides. The heat flux per unit area is fixed at  the lower boundary, the temperature at  the 
upper, and all four boundaries are stress free. The mean flux through the upper surface 
is 10-3 W m-2 in all three cases. (a )  All the heat is generated uniformly within the fluid 
and no heat enters through the lower boundary. ( b )  Half the heat lost through the upper 
surface enters through the bottom, the other half is generated uniformly within the region. 
(c) All the flux enters through the lower boundary. The dimensionless times required to 
establish these steady flows were (a )  270, ( b )  182 and (c) 151. (1 unit of dimensionless time 
is equivalent to 45.5 Myr.) The initial temperature distribution was that for figure 4(c) 
with a linear vertical variation superimposed to give a temperature of 20 at z = 0. The 
calculations were carried out on a 24 x 24 mesh. Contour intervals: T’, 0 (4.34) 30-38; w’,  
0 (0-122) 0.854; $‘, 0 (0.00698) 0.0489. 

Then, from (42), (43) and ( 5 2 ) ,  we find that 

The apparent differences between (44) and (53) are only a consequence of dif- 
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T 
FIGURE 8. Boundary and initial conditions as for figure 7, but with a 3 x W m-2 mean 
flux through the upper boundary and corresponding increases in flux through the lower 
boundary and internal heating rate. The dimensionless times required were ( a )  197, (b )  179 
and (c) 128. Calculations were carried out on a 24 x 24 mesh. Contour intervals: T', 0 
(9.72) 68.04; w', 0 (0.22) 1.54; $', 0 (0.0118) 0.0826. 

ferent definitions of the Rayleigh number. The efficiency of convection can best 
be measured by defining a modified Nusselt number 

M = [( 1 - 4p) F ~ ] / K A F ,  (54) 

where AT is the mean temperature difference across the layer; M is the ratio of 
the temperature difference that would be necessary to carry the flux in the 
absence of convection to that which is actually found (Thirlby 1970). From 
(53), M cc Ri when the flux is entirely from below. The maximum values of the 
dimensional variables T, u and w are plotted logarithmically against E in figure 
13. From the slopes we find that T cc RQ74, ucc Ro'5O and wcc RO.55 in good agree- 
ment with the predictions of (53). The Nusselt number 

M = 1.58(R/RC)f. (55) 
32-2 
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FIGURE 9. Boundary and initial conditions as for figure 7 
for (a)-(c) but with a W m-2mean flux through the 
upper boundary. (d )  Corresponding Rayleigh-BBnard 
case with the bottom temperature fixed at 142 "C, 
chosen to  produce a mean heat flux of 10" W m--2. The 
dimensionless times required were (a)  112, ( b )  85, (c) 
64 and (cl) 33-8. Calculations on a 24 x 24 mesh for 
(a)-(c), and on a 48 x 48 mesh for (d). (e) Temperature 
field of (d )  contoured symmetrically. Contour intervals 
for (a)-(d):  T', 0 (21.8) 174.5; w', 0.40 (0.43) 3-41; $', 
0.018 (0.021) 0-144. 
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(4 
w’ ?f 

FIGURE 10. Boundary conditions as for figure 9 but 
with initial temperature distribution that of figure 
4 (c) superimposed on a linear variation with T’ = 200 
at z = 0. The mean flux through theupper boundary 
is 3 x W m-2. The bottom temperature for (d )  
is 324 and the initial temperature distribution is that 
in figure 9( d). The dimensionless times were (a)  87, 
( b )  75, (c) 58 and (d) 17.3. The calculations for (a)-(c) 
were carried out on a 24 x 24 mesh until a steady 
state was reached, and then were interpolated onto 
a 48 x 48 mesh. Contour intervals for (a)-(d):  T‘, 

(e) Same temperature distribution as (d) but con- 
toured symmetrically. 

0(57.0)399.0; o’, 0.02 (0.97) 7.78; $’, 0 (0.034) 0.24. 
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For comparison with geophysical measurements i t  is convenient to use dimen- 
sional quantities: 

D. P.  McKenzie, J .  M .  Roberts and N .  0. Weiss 

(56 )  1 
h 

log,T = 0*7410g,,E+ 3.76, 

loglo& = 0*5010g,,E+ 1-91, 

logl,6j = 0*551ogloE+2*13, 

log,, (6/d) = - 0.24 log,, E - 1.57, 

where !I?, fi and 8 are the maximum temperature and horizontal and vertical 
component of the velocity, measured in "C and mmyr-1, and E is the energy 
flux in W m-2. The other comparison which can be made is with the computed 
velocity field. The streamlines near the centre of the cell are indeed circular, 
as would be the case if w were constant. 

The other extreme case is when all the heat is generated within the layer and 
aT/& = 0 at z = 0 (p = 1).  Internal heating produces a quite different tempera- 
ture and flow field. This difference is especially pronounced a t  high Rayleigh 
numbers, and is the result of heat being uniformly generated throughout the 
fluid, yet being lost only from the upper surface. When the heat flux is solely from 
below, heat can be transported to the upper surface by the rapid motion of a 
thin sheet of fluid in the plumes and thermal boundary layers, leaving the tem- 
perature of most of the fluid in the centre of the cell constant. This type of flow 
is not possible if heat is generated everywhere because the flow must bring all 
parts of the fluid close to the upper surface to permit them to lose heat by con- 
duction. There are two ways in which the motion can satisfy this condition. 
The fluid can rise into the upper boundary layer everywhere except where the 
cold vertical plume leaves the upper surface, or the flow can become unsteady. 
The experiments we have carried out suggest that both types of flow occur, but 
that the time-dependent modes may be suppressed by the symmetry conditions 
when the flow takes place in a square box. The flow in figures 9-11 shows the 
development of a broad rising region and a narrow sinking sheet when the box 
is square. At the highest Rayleigh number (figure 11) the initial single roll was 
unstable and the flow changed to a double roll by the development of an in- 
stability in the upper boundary layers as described in $5.4 below. 

The most striking feature of the isotherms is the detachment of the thermal 
boundary layer from the upper (active) boundary to give a narrow cold plume, 
through which all the fluid circulates. This resembles the pattern found when 
convection was driven by horizontal temperature gradients. The asymmetry in 
aT/ax dominated the vorticity and even the stream function. Throughout most 
of the cell fluid is slowly rising and the vorticity is small. As the Rayleigh number 
increases, fluid can more readily enter the boundary layer if the cell is attenuated. 
Thus we should expect the preferred cell width to be a decreasing function of R 
such that the ratio of the plume's thickness to the cell width is approximately 
constant. This is confirmed by the development of two cells in our calculations 
when R M 106, though the detailed behaviour is more complicated. 

The simple physical model must take account of the fact that there is no 
rising boundary layer, so that it is no longer possible to assume that o is 
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FIGURE 11. Boundary conditions as for figure 9 and 
initial conditions for (a)-(c) as for figure 10. The 
mean fluxthroughthe upper boundaryis 0.1 W m-2, 
and the bottom temperature for (d )  and (e) is fixed 
at  800. The initial temperature distribution for (d )  
was that for figure lO(d). The dimensionless times 
were (a)  55, ( b )  41, (c) 29.5 and (d )  10.6. The cal- 
culations for (a)-(c) and for (d )  were carried out in 
the same way as for figure 10. Contour intervals for 

$‘, -0.122 (0-061) 0-427. (e) Same temperature 
distribution as (d )  but contoured symmetrically. 

(a)-(d): T‘, 0 (132’0)924.0; OJ’, -10.44 (1.74) 12.18; 
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FIGURE 12. Mean horizontal temperature as a function of z’. The number against each 
curve refers to the figure showing the relevant isotherms. (a), (b )  All heat generated within 
the fluid. (c) Half generated within, half conducted through the lower boundary. (d )  All 
conducted through the lower boundary. 

approximately constant throughout the main flow. Instead, we must consider a 
sinking plume of thickness 6 and velocity w, together with a rising main flow which 
carries the heat upwards and moves with a velocity W .  Conservation of mass 
then requires that 

Conservation of energy then demands that the total flux be carried upwards 
by the main flow and lost by conduction through the horizontal boundary layer 
a t  the top of the box, so that 

Wd M w6. (57) 

WATd M KATd/S M Ed2.  

w/J2 M gaATlv. 
Finally, from (43) 

Combining (57)-(59), we then obtain 

1 w M RgK/d, 6 z R-td, 
AT M R-&d2/K = R % ( ~ v f g o ~ d ~ ) ,  

so that the Nusselt number M cc Bi.  The difference between (60) and (53) is 
caused by the lack of symmetry in the convection. From the results plotted in 
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R/R, 
FIGURE 13. Log-log plots of S/d, !f’, .ci and 6 as functions of E for (a)  all heat supplied in- 
ternally, (b )  half supplied internally, half from below and (c) all supplied from below. The 
straight lines are the least-squares best fits given in (56), (61) and (62). Two lines are 
shown for 6jd for (a)  and (c )  : x , values for the depth at which the maxima of the mean 
temperature in figure 12 occurs; 0, values of 6/d obtained from !Fmx = - (dT/dz),=,(6/d). 
The lines fitted to the circles are given in (56), (61) and (62). (d )  Nusselt number as a 
function of R/Rc for the Rayleigh-BBnard cases. 

figure 13 we find that ?cc RO.76, $2 cc RO.54, & cc R0.65 and 6cc R-O.l5. Except that for 
6, these exponents are in fact closer to the predictions of (53) than to those of 
(60). The best fit to the numerical results is obtained with 

(61) I 

I 

loglo? = 0.76 log,, E + 3.58, 

log,,& = 0*5410g10E+ 1.85, 

log,,& = 0.65 log,, E + 2-28, 

10glo(6/d) = -0.15log10E- 1.25. 

The intermediate case with half the heat supplied from below and half gener- 
ated internally has features in common with both the other models. The rising 
plume is less important than the sinking one and the flow carries all the fluid 
into the upper boundary layer, but a t  a slower rate than when the energy is 
generated within. Contours of T ,  w and $ are shown in figures 7-11 and the re- 
sults are in good agreement with the predictions from the simple model in (53). 
The best-fitting straight lines give 

(62) 

1ogl0? = 0*7510g,,E+3*71, 

loglo& = 0*4910g10E+ 1.80, 

logl08 = 0*59l0g,~E+2.18, 

lOg,o(6/d) = - O.lBlog,OE- 1.33. 

One feature of the temperature field which is not apparent in figures 7-11 
is the mean temperature profile, given by 
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which is shownin figure 12. Malkus (1954) argued that the mean vertical tempera- 
ture gradient had to be negative everywhere within a convecting region. Though 
physically plausible his rule does not appear to be obeyed in the numerical 
experiments described here, nor in those with finite Prandtl numbers (Veronis 
1966; Moore & Weiss 1973). Indeed, wherever the flow is dominated by vertical 
plumes the mean vertical temperature gradient is positive. The physical explana- 
tion of this phenomenon is clear from the two-dimensional flow structure in 
figures 7-1 1. When the heating is from below the lowest mean temperature occurs 
just above the bottom boundary layer because the sinking sheet of cold fluid 
spreads out horizontally and so contributes more to the horizontal average than 
where the sheet is vertical. The rising sheet shows the same behaviour and 
therefore the mean temperature gradient is negative away from the boundaries. 
The cause of the similar behaviour in the internally heated case is more obvious 
because the cold sinking fluid spreads over the bottom of the box and gradually 
warms as it rises, becoming hottest before entering the upper horizontal boundary 
layer. Though these physical explanations of the positive mean temperature 
gradient are particular to the experiments carried out above, the phenomenon 
appears to be a general and surprising feature of convection dominated by the 
nonlinear terms. 

Convection driven by internal heating has been investigated in laboratory 
experiments by Tritton & Zarraga (1967), using water containing dissolved 
zinc sulphate, with a Prandtl number of 5-5, and heated internally by ohmic 
dissipation. They found polygonal cells, dominated by descending plumes, whose 
size increased with R. These experiments were repeated by Schwiderski & 
Schwab (1971), who explained the increased cell widths as a consequence of the 
variation of electrical conductivity with temperature, which results in non- 
uniform heating. This conclusion is supported by Roberts’ (1967) theoretical 
treatment and by a careful computationalinvestigation by Thirlby (1970), which 
indicated that the cell width should decrease, as predicted by our numerical 
experiments. Thirlby studied two-dimensional convection in water, with rigid 
boundary conditions, for 3000 Q R Q 52000 (1 < M < 3) and also computed 
three-dimensional results for 4000 6 R 6 20000. Prom the results of these 
three-dimensional numerical experiments he concluded that convection cells 
would in fact be three-dimensional provided that the Prandtl number was greater 
than 2.5.  

5.4. Tirne-dependent behaviour 
Owing to the limited class of perturbations permitted by the periodic boundary 
conditions, the existence of steady convection in a square box does not imply that 
square rolls in a layer of infinite horizontal extent would necessarily be stable 
at  the same Rayleigh numbers. The only instability found in experiments with 
a square box occurred with internal heat generation. For R = 2-4 x 106 ,  a single 
roll developed into two cells (figure 11). The same instability of the single roll 
occurred with R = 1.4 x lo6 and was studied in detail using this value of the 
Rayleigh number because the boundary layer was thicker and therefore the errors 
in the numerical scheme were reduced. This investigation showed both the 
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(6) 
0, 

FIGURES 14 (a) and ( b ) .  For legend see facing page. 

influence of the periodic boundary conditions and the finite grid size on the 
development of short-wavelength instabilities. 

As in all experiments on a square box the convection was started by perturbing 
the temperature to form one roll. The flow quickly settled down to a single roll. 
The temperature and flow fields are shown in figure 14 and closely resemble those 
in figure 10. The temperature increases steadily in the flow below the boundary 
layer and the mean temperature gradient is positive except in the upper boundary 
layer. The isotherms in figure 14 show that the horizontal boundary layer is the 
only unstably stratified part of the convecting region and therefore we should 
expect any instabilities to grow there. The local Rayleigh number R, for the 
boundary layer is 

Substitution from (60) gives 

whereas (53) would give 

Therefore internal heating, unlike heating from below, tends to produce a boun- 
dary layer which becomes more unstable with increasing Rayleigh number. 
The same argument was used by Busse (1967) to  suggest that Rayleigh-BBnard 
convection between rigid boundaries would become unstable as the Rayleigh 
number was increased. In  our experiments this instability of the boundary layer 
did not develop until the temperature of the main body of the fluid had increased 
to a critical value. The experiment was first carried out on a 24 x 24 mesh with 

R, = ~ ( c ~ ~ A T / K v ) .  (63) 

(64) 

R, z 1. (65) 

R, Z R* 
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T 
(d 
0’ 

FIGURE 14. The formation of two cells from one on a 24 x 24 mesh when the mean flux 
through the upper boundary is 5.85 x i O - 2  W m-2 and is all generated within the fluid. 
Initial temperature distribution that for figure 4 (c) but with a linear temperature varia- 
tion T‘ = 400(1-z‘) superimposed. (a)  t’ = 6.38, ( b )  t’ = 16.64, (c) t ’  = 19.14, (d) 
t’ = 19.34, (e)  t’ = 147.6. Contour levels: T’, 0 (50.0) 350.0 (25.0) 450.0; w’, -9.0 (2.0) 
17.0; $’, -0.12 (0.04) 0.32. 

the result shown in figure 14. Instability of the boundary layer produced a cold 
blob of fluid which sank along the left-hand edge of the box, and after the flow 
had settled down two cells remained. Before the cold blob shown in figure 14 had 
been produced, several instabilities of the boundary layer had already occurred, 
but had been swept to the right by the main flow before they had reached a 
sufficient depth to breakup the roll. When these perturbations reached the sink- 
ing sheet on the right they produced a considerable increase in the vertical velo- 
city. The kinetic energy as a function of time is shown in figure 15, where the 
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t' 

FIGURE 15. jol loA o'$'dx'dz' (= A x kinetic energy, where A is a positive constant) for 

figure 14 (marked 24 x 24) and figure 16 (marked 48 x 48). Initial values of T' for both cases 
from figure 4 (c) with T' = 200( 1 - 2') superimposed. This condition was also used for the 
calculations in figure 16 but not for figure 14. The instability which breaks the circulation 
into 2 and 3 cells respectively is marked by an arrow. Vertical lines labelled (a)-(h) corre- 
spond to figures 16 (u)-(h). The difference between the two curves is the result of inadequate 
resolution of small-scale temperature variations on the 24 x 24 mesh. (t' = 1 is equivalent 

to 45.5 Myr.) 

time-dependent behaviour before the formation of two rolls is striking. The large 
peak for both meshes which occurs before the formation of two and three cells 
is the result of a sinking blob of cold fluid being swept into the sinking sheet 
before it had penetrated to a sufficient depth to  rearrange the circulation. 

The experiment was repeated on a 4 8 x 4 8  mesh and the corresponding 
development together with the kinetic energy as a function of time are shown 
in figures 16 and 15. The kinetic energy shows similar oscillations but they do not 
occur a t  the same time. Furtherniore when the instability does develop the blob 
sinks a t  some distance from the left-hand edge and the final state has three, 
and not two, rolls in the square box. The difference in behaviour is the conse- 
quence of the importance of the boundary layers in controlling the loss of heat 
and instabilities. With a 24 x 24 mesh only the upper two of each column of 24 
points lie within the boundary layer. The error analysis of Moore et al. (1974) 
shows that such short-wavelength disturbances are not accurately represented. 
The representation of the convective terms is less accurate than that of the 
diffusive, and the combined result of both is equivalent to a higher value of the 
diffusion coefficient and thus a lower Rayleigh number for short-wavelength 
disturbances. Although the difference between the results from the 24 x 24 and 
48 x 48 meshes depends on the detailed treatment of two-dimensional short- 
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wavelength disturbances, which cannot be represented simply by changing the 
Rayleigh number, the discrepancy between the two experiments is not surprising. 
Nevertheless, the qualitative behaviour of the 24 x 24 mesh is the same as that 
a t  higher resolution except that the final state consists of two rather than three 
rolls. This difference is the consequence of the exact position a t  which the blob 
falls, combined with the limitations imposed on further instabilities by the 
reflexional symmetry. Once a two- or three-roll flow has developed i t  cannot 
easily be changed. 

These experiments show that square rolls are not stable a t  Rayleigh numbers 
above 1.3 x lo6. It is desirable to discover the preferred width of rolls at  all Ray- 
leigh numbers, but this information appears to require numerical experiments 
in very wide boxes. Malkus (1954) suggested that the flow in the Rayleigh- 
BBnard problem is such as to maximize the convective heat transport for a given 
temperature difference. The corresponding principle, if the mean heat flux is 
fixed, is the minimization of the maximum temperature of the fluid. This cri- 
terion is easy to apply butit doesnot seem to agree with the experimental observa- 
tions. Busse (1967) studied Rayleigh-B6nard convection with rigid boundary 
conditions and showed that the wavenumber of the rolls for which the heat 
flux was greatest increased from 3.117 a t  the critical Rayleigh number to ap- 
proximately 3.8 at R/Rc = 5.85. The width of the stable rolls should therefore 
decrease with increasing Rayleigh number. Krishnamurti (1 970a) has carried 
out experiments with the same boundary conditions as Busse used, and has 
found that the width of the rolls increases as the Rayleigh number is increased. 
Busse & Whitehead (1971) carried out a series of elegant experiments which 
strongly supported Busse’s (1967) theory, and also studied the interaction be- 
tween rolls of different widths. They showed that wide rolls generally grew 
a t  the expense of narrower ones even if the larger rolls were themselves unstable. 
The numerical experiments described below show the same phenomenon. It 
is clear from these experiments that Malkus’s (1954) criterion does not provide 
an accurate method of determining the preferred aspect ratio of an individual 
roll, which can only be discovered by carrying out experiments in boxes contain- 
ing many cells (Foster 1969). 

Furthermore, numerical experiments by Lipps & Somerville (1971) showed 
that it is essential to permit three-dimensional disturbances to be present if 
the Nusselt number obtained from the numerical calculations is to agree with 
that observed even though the resulting flow is two-dimensional. This result 
is of interest because it demonstrates that two-dimensional calculations will not 
show the increase in h with increasing Rayleigh number observed in laboratory 
experiments. The manner in which three-dimensional motions achieve this 
change in the form of the flow is more clearly displayed by the laboratory ex- 
periments of Willis, Deardorff & Somerville (1972). Though these results show 
the importance of three-dimensional motions in the evolution of two-dimensional 
flows, they do not suggest that the small values of h found in the internal-heating 
experiments described here are a result of the restriction of the flow to two 
dimensions. Neither the numerical nor the laboratory experiments suggest that 
the existence of three-dimensional transient motions can produce a steady 
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T' 

FIGURES 16 (a)-(&). For legend see facing page. 
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FIGURE 16. Boundary conditions as for figure 14, initial values of T' from figure 4(c) with 
T' = 200( 1 - z') superimposed. Calculations carried out on a 48 x 48 mesh. (a) t' = 27.16, 
( b )  t' = 29.77, (c) t' = 32.05, ( d )  t' = 32.80, (e) t' = 33.61, (f) 6' = 34.01, (9)  t' = 34.25, 
(h) t' = 34.41, (i) t' = 53.77. Contour intervals: X', 0 (61.5) 492.0; u', - 10.4 (1.3) 11.7; 
$', -0.095 (0.019) 0.150. 

33 F L M  62 
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two-dimensional flow which is itself unstable to two-dimensional disturbances : 
indeed such a result would be very surprising. 

An attempt was made using a 48 x 24 mesh to investigate the flow in a box 
whose width was twice its height, containing two square cells and with a Rayleigh 
number of 1 . 4 ~  lo6. Judging by the results from the square box a t  the same 
value of the heat flux, the behaviour of such an experiment is likely to be quali- 
tatively correct, though the resolution will be insufficient to describe accurately 
the temperature field in particular. The experiment was first carried out with all 
the heat generated internally, starting the convection as usual with one roll 
in the box. The flow was unstable and broke down into two rolls with both sinking 
plumes a t  the vertical boundaries of the box. The subsequent behaviour is 
shown in figure 17. As was expected from the experiments on a square box a t  the 
same Rayleigh number the boundary layer becomes unstable and forms a cold 
sinking blob, followed by the formation of four rolls. Since the blob does not fall 
exactly in the middle of the box two of these rolls are larger than the other two. 
The larger rolls grow a t  the expense of the smaller until the sinking sheet which 
was formed by the blob joins one of the sinking sheets a t  the edge of the box. The 
velocities increase for a short time when this happens, but the flow and tempera- 
ture fields soon return to a pattern which resembles that which existed before 
the instability developed. However, this state is unstable, a new blob forms and 
the whole cycle is repeated. Since the dimensionless repeat time r, is governed by 
the time taken to eliminate the two smaller rolls, and since this in turn depends 
sensitively on the exact position a t  which the cold blob sinks, the oscillation is 
not periodic and observed values of r, covered the range 3 < r, < 4. Various 
initial conditions were tried, to determine if the time-dependent behaviour was 
the result of an attempt to  find a steady state not compatible with the starting 
conditions. The behaviour of the fluid was the same whether the experiment was 
started with two, three or four rolls, in the box, though the time taken for it to 
become established was not. This experiment is barely within the resolving 
power of the numerical scheme used, as the experiments with a square box and 
different mesh sizes showed. The development of the sinking blob is, however, 
the critical event, and it reproduces the behaviour found in a square box. For 
this reason we believe that the time-dependent behaviour may be a feature of the 
solution of the nonlinear equations and not just an artifact of the numerical 
scheme. This belief should, however, be checked using a finer mesh. If a steady 
state were attained, the time taken to reach it would be the thermal time for 
the box, 

7 ,  = L2/7T2K, (66) 

which is far greater than the turnover time r = d/V.  (For the earth, r N lO7yr 
but r, z 4 x i09yr, which is comparable with the age of the earth.) 

Time-dependent flow did not occur with R = 7.2 x lo5 and a normalized cell 
width h = 2. This difference could either have been caused by the existence of a 
steady solution for an infinite layer, or by the suppression owing to reflexional 
symmetry of the instabilities which would have produced time-dependent 
behaviour. Experiments with h = 2 and R = 1.4 x lo6, but with half or all the 



Convection in the earth’s mantle 515 

flux coming from below, also showed time-dependent behaviour. However, 
because the horizontal velocities at the upper surface were more rapid than for 
the internal-heating experiments, the boundary-layer instabilities were carried 
into the sinking sheet before they could form two rolls. 

These results should be compared with Krishnamurti’s (1970b) careful 
experiments a t  large Rayleigh number, and with the ideas and calculations of 
Howard (1966) and Foster (1971). The Rayleigh number required to maintain 
the same heat flux in a Rayleigh-B6nard experiment is 1.2 x lo5, which is almost 
two orders of magnitude less than that believed by Foster (1971) to be necessary 
for time-dependent flow. Poster, however, used the mean-field equations to 
establish this limit, and since these equations assume that both the flow and 
any disturbances to i t  have a single horizontal wavenumber, the class of distur- 
bances by which time dependence is produced in a box with A = 2 is suppressed 
by the mean-field equations. Clearly Krishnamurti’s (1 970 b )  experiments permit 
instability to a yet wider class of disturbances, and particularly three-dimen- 
sional forms. It is therefore not surprising that she finds that time-dependent 
behaviour for three-dimensional flow occurs when R/Rc = 34. Furthermore, her 
experinents were carried out in a fluid confined between rigid walls, and as Busse 
(1967) has pointed out, the boundary layers for such flows are less stable than 
those formed with the free boundary conditions used here. 

Recently Kulacki & Goldstein (1972) have carried out a series of experiments 
on an internally heated layer confined between rigid isothermal plates. They 
observed time-dependent behaviour very similar to that described above but a t  
considerably lower Rayleigh number (RIR, M 10). This difference is not surprising 
since the upper boundary layer in their experiments is likely to be more unstable 
than that in our numerical experiments because three-dimensional perturbations 
are permitted and the rigid boundary condition results in a thicker layer. 
Despite these differences in experimental conditions the form of the instabilities 
of the upper boundary layer, the growth of the larger cells at the expense of the 
smaller and the lack of steady flows described by Kulacki & Goldstein are 
strikingly similar to figure 17. 

5.5.  Validity of the numerical results 

The computations described above were all two-dimensional and assumed 
periodic boundary conditions in the x direction. This symmetry applies both 
to the main flow and to any perturbations which affect it. The most significant 
limitation of these models is that the resulting solutions may well be unstable 
if a wider class of disturbances is admitted. 

The discussion of time-dependent behaviour indicates that the solutions we 
have obtained may be unstable to two-dimensional disturbances which do not 
possess the imposed reflexional symmetry. Though the importance of this 
limitation can be reduced by increasing the width of the box, programming and 
computing considerations limited our work to models with h < 2. 

The problem of the stability of the solutions obtained below to three-dimen- 
sional perturbations, or two two-dimensional perturbations in a plane different 

33-2 
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from that of the main flow, can obviously not be tested by the present numerical 
scheme. The stability of Rayleigh-BBnard convection between rigid boundaries 
has been extensively studied both theoretically (Schliiter et al. 1965; Busse 
1967) and experimentally (Rossby 1969; Krishnamurti 1970a, b ;  Willis & Dear- 
dorff 1970; Busse & Whitehead 1971). The agreement between theoretical and 
experimental results is impressive, and both show that for R 5 9Rc the only 
stable form of convection is in two-dimensional rolls. For 9R, < R 5 13Rc both 
rolls and certain other forms of convection are stable, whereas for R 2 13Rc 
rolls of all wavelengths are unstable to three-dimensional perturbations and 
are replaced by a bimodal form of convection (Busse & Whitehead 1971). The 
transitions, which occur a t  higher Rayleigh numbers, to time-dependent three- 
dimensional flow and to turbulence have been studied experimentally (Rossby 
1969; Krishanmurti 1970b; Willis & Deardorff 1970) but have not yet been 
described by any satisfactory theory. 

The corresponding problem when convection is driven by internal heat sources 
has been much less studied. Krishnamurti (1968a, b )  investigated an equivalent 
problem a t  Rayleigh numbers close to the critical value. She discussed the 
behaviour of a layer of fluid bounded by horizontal surfaces a t  uniform tempera- 
tures when the average of the upper and lower temperatures changed a t  a 
rate 7.  This corresponds to heating from within and below, with ,u = - 7/( I - By). 
Krishnamurti showed both theoretically ( 1 9 6 8 ~ )  and experimentally (1968b) 
that rolls were the preferred form of instability a t  the critical Rayleigh number 
only when 7 M 0. When 171 > 0.1 hexagons are stable and rolls are not. Moreover, 
the hexagons have a rising region in the centre if 7 < 0 (up-hexagons) and a sink- 
ing region if 7 > 0 (down-hexagons). As the Rayleigh number is further increased, 
the hexagons become unstable and are replaced by rolls. Thus her study shows 
that for a fluid heated entirely from within (7 = - 2) there is a region close to the 
critical Rayleigh number where up-hexagons should exist. 

The agreement between experiment and theory so strikingly demonstrated 
by Krishnamurti is less satisfactory a t  higher Rayleigh numbers. Roberts (1967) 
used the mean-field equations to examine the stability of rolIs and hexagons to 
small perturbations. He found that rolls are marginally stable a t  all Rayleigh 
numbers. Up-hexagons are always unstable and down-hexagons are stable only 
for R 2 3Rc. The one wavenumber for which marginally stable rolls exist 
increases slowly with increasing R. Thirlby (1970) concluded from his numerical 
experiments that the cells would always be three-dimensional. Near the critical 
Rayleigh number, they are rectangular, developing into hexagons for R 2 4Rc. 
The flow is always downwards a t  the centre of the cells. The experiments of 
Tritton & Zarraga (1967) and Schwiderski & Schwab (1971) also gave down- 
hexagons, though the horizontal wavenumbers disagreed with theory. Further 
experiments are required to investigate the differences between the Rayleigh- 
BBnard case and convection driven by internal heating. 

The calculations described here are only two-dimensional. Both Busse (1967) 
and Roberts (1967) have shown that, as R is increased, rolls first become unstable 
to perturbations which cannot be represented in our numerical model. These 
instabilities will therefore be suppressed. Though such instabilities can probably 
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only develop where the mean temperature is unstably stratified and rolls will be 
stabilized by free boundaries, it would nevertheless be desirable t o  carry out an 
analysis similar to that of Busse (1967) on the models computed here. 

The restriction on the planform of permitted instabilities is the major limita- 
tion of this study. Therefore even though the solutions obtained here are good 
approximations to  the exact solutions of the governing nonlinear equations i t  
does not necessarily follow that they are stable solutions, nor that any insta- 
bilities they may show are in fact instabilities which apply to the full solutions. 
The solutions do, however, illustrate the physical processes which must govern 
convection a t  high Rayleigh numbers. I n  particular they show how boundary 
layers are developed and the possibility that they may become gravitationally 
unstable. The understanding of convection a t  high Rayleigh numbers gained 
with the help of these numerical experiments will now be used to investigate 
some features of convection in the mantle. 

Apart from the geometrical limitations discussed above it must be remembered 
that our model is undoubtedly too simple to reproduce the major features of 
plate motions. The two most important effects which are omitted are the varia- 
tion of viscosity with temperature and the shear-stress heating. Without the 
first plates could not exist, and simple order-of-magnitude calculations suggest 
that  the second may govern the temperature structure in critical parts of the 
boundary layers. Furthermore, we have only considered zero-stress conditions 
a t  the lower boundary. Nevertheless, despite its simplicity, the model we have 
used can, we believe, be related to geophysical measurements on the earth. 
Moreover, the complicated behaviour of this simple model illustrates the diffi- 
culties likely to be encountered in producing a realistic model of convection in the 
mantle. 

6. Geophysical implications for mantle convection 
There is a t  present no means by which the streamlines or the temperature 

structure of convection in the earth’s mantle can be observed. The few known 
phenomena which are directly related to the flow have been discussed in $2, 
and it is with these that the numerical experiments should be compared. If 
surface observations of long-wavelength gravity anomalies, regional changes in 
the elevation and heat flow are to be related to the models obtained in the pre- 
vious section, corresponding values must be calculated from the flow and 
temperature fields. The methods by which these quantities were obtained are 
discussed in the appendix. The calculation of the gravity field is less straight- 
forward than that of the other two, and to avoid errors due to the concentration 
of mass a t  the mesh points it was evaluated 35 km above the upper surface of the 
boxes. 

The variation of the heat flow, surface elevation and gravity field for three 
models is shown in figures 18-20. For these calculations the mean heat flux 
through the surface of the boxes has been fixed at 5.85 x W m-2 and three 
cases are investigated. In figure 18 all the heat flux is from below, in figure 
19, 3.0 x W m-2 is from below and the rest from within, and in figure 20 all 
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Contour intervals: T’, 0 (50-0) 350.0 (25.0) 600.0; $’, 0.0338 (0.04) 0.3538. 

the heat is generated within the fluid. As explained in 0 3 the results in figure 19 
most closely resemble the earth’s mantle if present estimates of the degree of 
partial melting beneath ridges are correct. 

The most striking feature of figures 18-20 is the positive gravity anomaly over 
rising parts of the flow. The total gravity anomaly is produced partly by the up- 
ward deformation of the surface over a rising current, and partly by the higher 
temperature of the rising material. These effects act in opposite directions [appen- 
dix, equation (85)] and are of the same order of magnitude. Various authors, 
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W 

notably Runcorn (1965), have argued that the gravity anomaly should be nega- 
tive over a hot rising current, but calculations by Pekeris (1935) and by McKenzie 
(1968a) on simple flows driven by horizontal temperature gradients applied to 
the upper surface showed that the effect of surface deformation dominated the 
gravity field caused by changes in density within the fluid, and the gravity 
anomaly was therefore positive over rising regions. Both authors used flows in 
which the conduction of heat dominated its convection. McKenzie (1968a) 
attempted t o  extend the results to flows in which the convection of heat was 
important and suggested that the gravity anomaly should change sign. The 
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results of the present calculations show that McKenzie's argument is not correct 
since the gravity anomaly is dominated by the surface deformation a t  all Ray- 
leigh numbers. Only results from steady-state solutions at a single value of the 
heat flux are shown in figures 18-20, but the gravity anomalies were calculated 
for all the models discussed in the previous section, and without exception their 
behaviour was the same. 

The principal difference between the three cases is in the variation between the 
sinking and rising regions. When all the flux comes from below the rising region 
convects as much heat and has the same shape as the sinking sheet. Therefore 
the heat flux, surface elevation and gravity do not show a pronounced asym- 
metry between rising and sinking regions. In  the other two cases the rising region 
occupies most of the box, and above it the gravity, surface elevation and heat 
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flow vary to  only a small extent. The sinking sheet, however, remains thin and 
produces a marked minimum in all three quantities above it. 

The correspondence between the results of the calculations above and cor- 
responding measurements on the earth's surface is unlikely to be close because 
of the simplifications made to the governing equations. The most serious dif- 
ference is probably the neglect of the temperature dependence of the viscosity. 
Without such dependence there is no difference between the mechanical proper- 
ties of the fluid in the cold boundary layers and in the rest of the flow, and there- 
fore the boundary layers do not correspond to plates on the earth's surface. 
Certain features of figures 18-20 are, however, of geophysical relevance. The 
uniformity of heat flow through the upper surface of the boxes in figures 19 and 
20 may explain the uniformity of oceanic heat flow in the deep ocean basins. 
The heat flux in these regions is not the result of the cooling of young plates, as 
it is locally near the ridges. Another explanation of this uniformity suggested by 
these experiments is that the convection is time-dependent in the manner de- 
scribed in the last section. Provided that the characteristic time for geometry 
of the sinking sheets to change is less than the thermal time constant of the 
plates ( N 30Myr) the heat flowing through the sea floor will be constant. The 
flow in the experiments described above satisfies this condition. 

The values of the horizontal velocities on the upper surfaces of the boxes in 
figures 18-20 should be compared with the half spreading rates determined from 
t,he oceanic magnetic lineations. The observed rates vary between about 5 and 
120mmyr-1, and the calculated values lie in the middle of this range. Unlike 
the observed values the calculated velocities are not constant over large regions 
because plates cannot be formed unless the viscosity depends on temperature. 
Similar results were obtained from a simple cellular model (Turcotte & Oxburgh 
1967; Oxburgh & Turcotte 1968). 

From a geophysical point of view the most important result of these experi- 
ments is the relationship between a positive gravity anomaly and upward 
deformation of the surface. This is not only a somewhat unexpected result; 
it can also be tested using observations of the elevation and gravity field. There 
are various difficulties which must be overcome before such a test can be carried 
out. The major variations of elevation are associated with active mountain belts 
and continent-ocean boundaries. These changes in height are compensated and 
are not maintained by convection in the mantle. They are also not associated with 
long-wavelength gravity anomalies. The smaller variations of elevation due to 
forces on the base of the plates can be separated from other effects only over 
regions where the crust and upper mantle do not have large lateral changes 
in density, or where the lateral changes are known and their effect can be 
removed. 

On the continents the only areas where these conditions are satisfied are the 
Pre-Cambrian shields. Woollard ( 1969) has collected the observations for various 
regions and determined for each of these the best-fitting straight lines relating the 
means of the free-air gravity anomaly and elevation evaluated over 3" squares. 
The relationships he found are given in table 4, together with that obtained from 
the convection experiments. Apart from one relationship for Africa all areas 
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Ag (mm s - ~ )  
Eastern and Central Canada 7.4 x h - 0.33 
Central and North Africa 
0-400 m - 8.5 x h + 0.29 
above 400 m 8.6 x h - 0.45 

South Africa, above 700 m 5.0 x h - 0.36 

All convective models give 
India south of 22" N 10.1 x 10-4 h- 0.70 

values close to 4.5 x lo4 h 

TABLE 4. Free-air gravity anomalies and elevation (h in m). The relations for the 
geophysical areas are those given by Woollard (1969) for 3' x 3' squares 

show an increasing free-air gravity anomaly with increasing elevation, in 
agreement with the convection experiments. The observed slopes do not, 
however, agree particularly well with that calculated. 

The other type of region in which the crustal thickness is approximately con- 
stant is the ocean basins. A correction must, however, be applied to take 
account of the time-dependent temperature structure of the plates. When a 
new plate is formed along the world's rift system its temperature is that of 
the mantle, and as it moves away it gradually cools and shrinks. Since the heat 
is lost by vertical conduction the temperature distribution within the plate, 
and hence the depth of the ocean, depends only on age. Thus the ocean depth 
can easily be calculated (Langseth, Le Pichon & Ewing 1966; McKenzie & 
Sclater 1969). Comparison of the theoretical elevation with observations shows a 
striking agreement between the two (Sclater et aZ. 1971). Any observations of 
ocean depth must first be corrected for this effect before being compared with the 
gravity field. 

The appropriate value of the gravity anomaly is rather less easy to obtain. 
It is clear that the comparison should be made only with the non-hydrostatic 
part of the gravity field, but because of the uncertainties associated with the 
origin of the earth's non-hydrostatic bulge discussed in $3, it is not obvious 
whether this term should be included. However, all other harmonics of the ex- 
ternal gravity field determined by Gaposchkin & Lambeck (1971) are clearly non- 
hydrostatic and should be used. Unlike satellite observations, those from surface 
ships show short- as well as long-wavelength anomalies. Trenches especially 
have huge negative gravity anomalies which were for many years believed to be 
maintained by convection in the mantle. Recently it has been generally recognized 
that elastic forces within the plates themselves are sufficient to maintain such 
anomalies (McKenzie 1967a), and Lambeck (1972) has even suggested that the 
same forces could maintain the shortest wavelength anomalies observed by 
satellites. Therefore, only those gravity anomalies whose wavelength exceeds 
about 2.5 x lo3 km should be used for such a comparison. Another contribution 
to  the gravity field has been discussed by Lambeck (1972). He calculated the 
gravity anomaly to be expected over a ridge from the temperature structure 
suggested by Sclater & Francheteau (1970), and showed that the effect was as 
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correlation between surface elevation and gravity anomaly. (a)  Section across the Rey- 
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milligals from Talwani et al. (1971). (c) Contours of the gravity field in the North Atlantic 
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greater than 2500 fathoms are indicated by vertical lines (from Talwani & Le Pichon 1969). 
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large as 0.4mms-2 over ridges spreading at a half-rate of lommyr-l, but 
decreased to 0.1 mm s - ~  when the half-rate was 50 mm y r l .  However, Anderson, 
McKenzie & Sclater (1973) failed to find a correlation between the value of the 
gravity anomaly over a ridge and its spreading rate, andit appears that this effect 
does not influence the satellite gravity field. Despite the various effects on both 
the gravity field and depth which are unrelated to convection in the mantle, 
this discussion clearly suggests that long-wavelength gravity anomalies should 
be correlated with regional variations of elevation. 

Such a correlation has in fact been remarked by Talwani & Le Pichon (1969) 
and by Talwani, Windisch & Langseth (1971) in the North Atlantic. Figure 21 
shows the regional gravity field over the North Atlantic, together with two pro- 
files across the ridge axis at  different latitudes. The correlation between gravity 
anomaly and depth in this region is striking. A similar result was obtained by 
Anderson et al. (1973), who compared the depth of the ridge axes of the world 
with the gravity anomaly obtained from the satellite gravity field of Gaposchkin 
& Lambeck (1971). They used the depth to the ridge axis because it could be 
directly compared with the gravity field without any corrections being applied, 
and showed that the slope m of the best-fitting line 

Ag = md+C (67) 

(where Ag is the gravity anomaly in mm s - ~  and d is the difference between the 
mean and the observed depth of the ridge in metres), obtained from oceanic 
observations agrees excellently with that, 3.0 x obtained from the calcula- 
tions above when allowance is made for the fact that sea water rather than a 
vacuum overlies the convecting region. These comparisons suggest that the 
regional elevation of both the continents and the oceans is affected by move- 
ments below the plates, and that both the calculated and observed gravity 
anomalies are positive over rising flows. 

Perhaps the most important difference between the numerical experiments and 
the type of convection required to move the plates is in the cell width required. 
The largest plate is the Pacific plate, with a horizontal extent of about lO4km. 
If the flow is to maintain its motion then the normalized cell width must be 
about 14. The experiments described here suggest that such a flow is unstable if 
the viscosity is constant. Unfortunately, the only numerical experiments as 
yet carried out on a fluid with temperature-dependent viscosity (Torrance & 
Turcotte 1971) were not sufficiently extensive to show whether the resulting flows 
had large cell widths. A useful model for mantle convection must possess stable 
solutions of this type, and it remains to be seen whether Torrance & Turcotte’s 
model does behave in this manner. 

The last problem of geophysical interest in these results is the behaviour of the 
mean temperature. There is a t  present some confusion among geophysicists 
about the relationship between the temperature variation with depth and the 
existence and vertical extent of convection in the mantle. The confusion is best 
illustrated by the variation of mean temperature with depth when all the heat is 
generated within the fluid (figure 12). It is clear that a layer of fluid with this 
temperature profile would be stable to any perturbations which did not move 
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the surface boundary layer, and it would therefore be supposed that convection 
could not occur. This argument is clearly false, since the temperature profile 
which must be tested for stability is not that in figure 12 but the profile obtained 
when the velocity is zero. Such a temperature structure is certainly unstable. 
The difficulty arises because major changes in the mean temperature structure 
are caused by convection. This argument shows that it is useless to test whether 
the observed structure of the mantle is marginally stable if in fact it  is the result 
of vigorous convection. Since the sinking slabs beneath island arcs convect 
up to a third of all the heat lost by the earth, the mantle is certainly convecting 
and therefore probably has a mean temperature gradient which is subadiabatic 
away from the boundaries (figure 2 ) .  

Another confusion arises from the same cause and concerns the influence of 
phase changes within the mantle on convection. The marginal-stability con- 
dition is again not satisfied between the surface and a depth of 700 km, since the 
sinking slabs convect heat to this depth. The temperature structure of the mantle 
will therefore be very close to the adiabatic, defined in the correct way to include 
phase changes. As material moves through the region in which phase changes 
occur its entropy will remain constant, and its temperature will change to satisfy 
this condition. Difficulties only occur if rapid changes in temperature occur 
over a small depth range (McKenzie 1970). 

The profile of mean temperature as a function of depth in figure 12 is in 
general similar to the best available estimates for the earth's mantle (figure 2 ) .  
There is, however, one important difference. In  figure 2 the temperature at  the 
base of the surface boundary layer is about 1200 "C, whereas the corresponding 
value from figure 19 is 380 "C. This difference is presumably caused by the neglect 
of the variation of viscosity with temperature in the calculations. Inclusion of 
this effect increases the thickness of the surface boundary layer and produces 
better agreement with the observations (Torrance & Turcotte 1971). Below the 
boundary layer the best estimate of the temperature in the earth was obtained 
by requiring the gradient to be adiabatic. Figure 12 shows that convection will 
modify the temperature gradient, making it subadiabatic throughout much of 
the convecting region and producing a boundary layer a t  its base. The resulting 
profile is shown in figure 2, but the difference between i t  and the adiabatic profile 
is too small to be measured by present geophysical techniques. 

An unexpected feature of the calculations described above was the time taken 
for the temperature field to reach its final state, irrespective of whether this was 
a steady state or tiiine-dependent flow. In  all cases of geophysical interest the 
time required was comparable with the age of the earth. Realistic geophysical 
calculations must therefore examine the time dependence of the flow. 

7. Conclusion 
The two-dimensional numerical experiments described in Q 5 can be under- 

stood in terms of a simple boundary-layer theory. At large Rayleigh numbers 
the flow develops thermal boundary layers, and their behaviour and stability 
determine the cell width and time dependence of the resulting flow. At Rayleigh 
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numbers comparable with that of the earth’s mantle steady-state solutions were 
found only when the experiments were carried out in square boxes, and required 
times comparable with the age of the earth to lose their time dependence. Further- 
more, no steady-state solutions were found for convection in boxes with a nor- 
malized width h = 2. It is therefore likely that convection in the earth’s mantle 
is unsteady. 

Few geophysical observations are directly related to flow in the mantle. 
The gravity field obtained from the numerical experiments shows that the 
gravity anomaly is positive over the rising part of the flow because the contribu- 
tion from the deformed surface dominates that from the temperature field 
within the fluid. The magnitude of the gravity and elevation anomalies agrees 
well with the gravity field obtained from the orbits of satellites and with the 
regional variations in ocean depth. Also the results of Talwani & Le Pichon 
(1969) and of Anderson et al. (1973) show that the correlation between gravity 
and elevation agrees with that predicted from this numerical experiment. The 
magnitudes of the horizontal velocities on the surface of the convecting layer 
are within the range determined from oceanic magnetic lineations. These results 
show that there is no reason to believe that convection in the upper 700 km of 
the earth’s mantle cannot account for those features of the earth which can be 
shown to have a dynamic origin. 

Two features are not accounted for. The horizontal extent of the largest plates 
requires ordered flow with h = 15. Also the temperature difference between the 
top and bottom of the boundary layer a t  the earth’s surface is about four times 
greater than that in the numerical experiments. Both these differences are prob- 
ably consequences of the neglect of the variation of viscosity with temperature in 
the calculations in 5 5 .  Its inclusion should suppress the type of boundary-layer 
instability observed in the present experiments, and hence permit the flow to 
develop with a large cell width and also thicker boundary layers. The numerical 
experiments of Torrance & Turcotte (1971) on fluids with variable viscosity 
were carriedout with the bottom temperature rather than the heat flux prescribed, 
and used only small cell widths. These experiments do not therefore reveal 
whether the variation of viscosity with temperature can indeed explain the 
differences observed above. Further experiments with Torrance & Turcotte’s 
model and with a fixed lower boundary are planned, and some effects of shear- 
stress heating will also be included. None of these effects were included in the 
present calculations because we wished first to study the behaviour of the simplest 
possible system of equations. The behaviour of the numerical experiments was 
more complicated than had been expected, even though the simple two-dimen- 
sional model that we used suppressed many forms of instability observed in 
experiments on real fluids a t  lower Rayleigh numbers. 

The relevance of these and other calculations to Wilson’s (1963) and Morgan’s 
(197 I) suggestions about the velocity and temperature distribution within the 
convecting mantle will be examined in a later paper. 
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Appendix. Evaluation of the external gravity field 
For comparison with geophysical observations the variation of the heat flux, 

surface elevation and gravity on the upper surface of the convecting layer must 
be obtained from the flow and temperature fields calculated in 5 5. The heat flux 
E(xJ is the easiest t o  obtain, since t o  a first approximation it is given by 

This value is, however, the heat carried by conduction across a plane a t  a depth 
of i h z  below the upper surface. Since the vertical velocity is not zero on this plane 
the value on this surface must include the heat convected across it as well as the 
heat generated within the fluid above it: 

The surface deformation is less easy to calculate. It must be obtained from the 
boundary condition on the normal stress rzz on the deformed upper surface: 

7, = -P+ 2pV(aW/az) = 0. 

Po = pogd( 1 - 2 ' )  

(70) 

(71 )  

and a component Pl due to the flow which vanishes if u = 0. The deformation of 
the surface is assumed to be small compared with the thickness of the thermal 
boundary layer, and therefore to first order in aTl only the value Po changes 
between x' = 1 and z' = 1 + aT,[', where 6' is the dimensionless deformation. The 
values for 5 in figures 18-20 show that this approximation is justified. Pl must 
be obtained from the equation governing the conservation of momentum. Writ- 
ing 

the momentum equation becomes 

The pressure P consists of a hydrostatic component 

Pl = pogdaTIP;, Ul = gdaTIU;, (72) 

0 = V'2u'- V'P; + V'U;  + T'az. (73) 

If the wavelength of the disturbance is short compared with the radius of the 
earth 

VIP; 9 v'u; (74) 
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and V’U; may be neglected (McKenzie 1968a). Hence 

a$! awl ap; 
ax! azf azl 

- V‘2- = -- -- 

or on the upper surface 

531 

(75) 

The constant term may be omitted since it is the variation of (’ with x’ that is 
of interest. Evaluation of (70) on the deformed surface then gives 

which is easily evaluated. 
The variation of the gravity field depends on both the variation of density, 

and hence of temperature, throughout the convecting region and on the surface 
deformation. The gravitational potential due to these causes a t  ro is 

Ul(ro) = p o ~ T , G  

However, what is measured is 

aU,/az, = gaTlg; 

= $napopaTlgi, 

where a is the radius of the earth and pop is its mean density. 
Substitution and evaluation of the integral over y gives 

179) 

where all variables under the integral signs are dimensionless. The periodic 
boundary conditions require that 

T(x , z )  = T(2nh-x ,x )  = T(2mh+x7z) ,  (81) 

where h is the normalized width of the box in which convection is occurring and 
n and m are integers. Hence 

n 
= T d x  5 { ( ~ - x , , + 2 m h ) ~  + ( z - z , ) ~ } - ~  T dx 

m = - m  

W 

- ( n T d x  C { ( x + ~ ~ + 2 n h ) ~ + ( z - 2 ~ ) ~ } - ~  ( 8 2 )  

but 

34-2 



532 

(Jolley 1961, equation 858), whence (82)  becomes 

D. P .  McKenxie, J .  M .  Roberts and N .  0. Weiss 

(84) 
Equation (80) therefore gives 

Evaluation of (85) was carried out for z0 = 1.05 and the results were checked by 
comparison with McKenzie’s ( 1  968 a)  calculations. 
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